Introduction To Symplectic Topology
By Dusa Mcduff & Dietmar Salamon
Solutions By Julian C. Chaidez

Exercise 1.5 Carry out the inverse Legendre transform from a Hamiltonian system to a Lagrangian
system.

Solution 1.5 Suppose that we are given a Hamiltonian H with det( T0:d ) # 0. Then we define:

OH
v L(t,x,v) vy — H(t,z,v
k= 8yk Zyk k )

Now we show that if y(t) = (z(t),y(t)) satisfies Hamiltons equations for H, then (z, 2£) satisfy the Euler-
Lagrange equations for L. First we see that due to Hamilton’s equations, we have:

At oy Vdt T oy

We observe that:
d  OL d oH 0y,
— H(t = —(yp — — 1.
dt((%k dt 81} Z yjv; — H{t, 2,v))) dt (o Oy, + ; Oy, vs)

Then we see: 9 e 9H & OH
9Y; ar; oy; 9Y; _
; ]avk Z dt Ovy, Z 3y Ovy, B avk

Thus:
i(a_L) _dy, _ _OH
dt avk N dt N 8xk

Furthermore we have:

oL o oH COH Oy oo, OH o OH
P = g 2 Yigy THETO) = gk ) e Y A = oy

Here the equality of the last two terms comes from the fact that 8‘% =0 and y; = f . This proves the
J
result

Exercise 1.12 Show that the set Symp(R?") of symplectomorphisms of R?" form a group.

Solution 1.12 The identity map Id : R*" is a smooth symplectomorphism since its Jacobian is the
identity map TR** — TR?", which is evidently symplectic. Furthermore given ¢, € Symp(R*") we can
compose them to get a diffecomorphism 1 o ¢ and since d(i) o ¢) = dip o d¢, the fact that dip and d¢ are
symplectic and that symplectic matrices are a group implies that d(i)o0¢) is symplectic. Finally, the inverse



diffeomorphism ¢! has d(¢~!) = (d¢)~', thus its Jacobian is also in the linear symplectic group, so it is
a symplectomorphism. Associativity follows from the same property for group composition in Diff. Thus
concludes the proof.

Exercise 1.13 Consider the matrix:
o — A B
~\C D
where A.B,C and D are real n x n matrices. Prove that ® is symplectic if and only if its inverse is of the
form
(%)
- —CT AT

Deduce that a 2 x 2 matrix is symplectic if and only if its determinant is equal to 1.

Solution 1.13 We simply carry out the matrix multiplication. ¢ is symplectic if and only if:

o7 I — AT CT 0 -1 A B\ (A" CT -C =D\
-\ BT DT 1 0 ¢ p) \ BT DT A B )
CTA—-ATC C'™B—-A"™D\ [0 -1
D"A-BTC D'B-B'™D ) \1 0
Furthermore we see that the inverse condition is true if and only if:
pt BT A B\ (D'A-B'C D'B-B™DY\ (10
—CT AT C D) \ATC-CTA AT™D-C'™B ) \0 1
From these expressions it is evident that these two conditions are equivalent, since they are both true if
and only if CTA — ATC = DB — BTD = 0 and DA — BTC = ATD — CTB = 1. In the n = 1 case,

this is equivalent to ad — bc = 1 (i.e the determinant 1 condition). The other condition is trivially satisfied
since 1 X 1 matrix commute.

Exercise 1.15 Find an element of the linear group SL(4,R) which is not in Sp(4, R).

Solution 1.15 One cheap way of doing this is to just find a linear ¢ where ¢*w = —w. Then:
¢*(w2) — ¢*w A ¢*w — (_1)2w2 — w2

Such a map ¢ is given, for example, by the matrix 4 x 4:
1 0
b =
(0 21)

Exercise 1.17 (Confirming Lemma 1.17) The Poisson bracket satisfies the Jacobi identity.



Solution 1.17 We will write this out in Einstein index notation, which will make it clear where the signs
are coming from, then we will switch to a more invariant notation. Let J = (j%) be the co-symplectic
matrix/form in coordinates. Furthermore let f, g, h € C*°(R?*"). Then:

{fv {ga h}} = acijdad(aagjababh) = achdeédaagjababh + achjCdaagjab@dabh

= 0.hj“030,97" Oph — 0.0 0aqj**0q0sh = d*g(Jdf, Jdh) — d*h(Jdf, Jdg)

It is clear that if we sum over the cyclic permutations of f,g and h, the result will vanish due to term
matching.

Exercise 1.19 How does the Poisson bracket behave with respect to product of functions? Prove that
the Poisson bracket of two functions f and g is given by:

{f, 9} = wo(Xy, Xy)

Solution 1.19 The Poisson bracket obeys a Leibniz rule. We see that:

{fg,h} = =(V(f9)" JoVh = f(—(Vg)" JoVh) + g(—(V )" JoVh) = f{g.h} + g{f, h}

We can use the fact that {fg,h} = {h, fg} to show the analogous identity for the other entry.

For the second part, we just observe that:

—(VH " JVg ==V (=Jo)Jo(—Jo)Vg = (= V ) Jo(—JoVg) = wo(Xy, X,)

Exercise 1.20 Check that in the Kepler problem (Example 1.7) the three components of the angular
momentum x X & are integrals of motion which are not in involution.

dx

Solution 1.20 In the Kepler problem we have p = ‘fi—f. To show that the elements of x X p =z x % are

invariants of motion we just have to show that < (z x %) = 0. But:

d dx dr dx dz? —x
_<x g =T X
dt

a, _ar ar ar “t _p
T @ w T EE

Now observe that the whole system is symmetric under orthogonal transformations (in fact this is where
these conserved quantities come from, via Noether’s theorem). Thus to check that these integrals of motion
are not in involution, we need only check it for one pair of components. Take f(x,p) = (zXp); = zaps—x3p2



and g(z,p) = (x X p)g = x3p1 — x1p3. Then we just see that:

0 —P3
Pp3 0
Vf= —D2 Vg = h
0 T3
—T3 0
T —I

Thus it is easy to calculate {f, g} = —(Vg) oV f = xop1 — xop1 (there may be a sign error here but this is
irrelevant for showing that it’s not 0).

Exercise 1.22 Consider the Hamiltonian:

n

H = Za] ZL‘ —|—yj
7=1

with a; > 0. Find the solution of the corresponding Hamiltonian differential equation. Prove that this
system is integrable. Find all periodic solutions on the energy surface H = ¢ for ¢ > 0.

Solution 1.22 Consider H;(z,y) = x? + y2. In the coordinates (z1,¥1, ..., Zn,Ys) the matrix Jy splits
into blocks where on the (x;, y;) each block acts as the standard 90 degree rotation. Thus we evidently have
wo(dH;,dH;) = 0. Thus any linear combination H = ), a;H; has the property that the H; are conserved
quantities, due to the linearity of the Poisson bracket. Thus the system is integrable.

If we examine the defining ODE for the Hamiltonian flow, we see that:

dx; dy;

(dt dt> —ai(—Yi, T;)

Therefore the integral curves of the Hamiltonian system are precisely the vectors:

(i (1), yi(t)) = (r; cos(—a;t), r; sin(—a,t))

Here r2 =3, r2.

Now I C {1,...,n}. Then we make the following claim: an orbit (r; cos(—a;t), r; sin(—a;t)) with r; > 0
if and only if 7 € [ is periodic if and only if there exists an s such that 5 € Z for all < € I. If this is the
case, then evidently any such orbit is s-periodic. Conversely, if such an orbit (r; cos(—a;t), r; sin(—a;t)) is
s-periodic, then a;s € 277 for all © € I.

To see that the system is integrable, we show that we can find n conserved quantities H; with {H;, H;} =
0 and {H, H;} = 0 for all i, 5. We take:

1
—(2F +v7)

H’i:
5



so that gfji = 0;;x; and %—ZZ’ = 0;;;. Then:

Oz Oyy, Oyr, Oxy,

{Hi, H;} = = 20ubin — yir0udi

k k
The above expression is 0 if ¢ # j since then either d;; = 0 or d;, = 0. If i = j, then the expression
is 0 because {F,F'} = —{F, F} and thus {F, F'} = 0 for any function F. Thus these are n commuting
conserved quantities which commute with H since H = ). a;H; and the Poisson bracket is bilinear.

Exercise 1.23 Carry out the Legendre transformation for the geodesic flow. Prove that the g-norm of
the velocity ||, = \/(%, g(z)) is constant along every geodesic.

Solution 1.23 We have that the conjugate momentum is p; = g;;4° and thus that y/ = g“p;. Therefore
under the Legendre transform we have:

.. 1 L .. 1 .. 1 ..
H(z,p) = pyi — L(z,y) = g“pip; — §gijyzy] = g"pipj — §g”pz~pj = §g”pipj

Hamilton’s equations are: -
dv; dH dpy, _ —10g"

at  dg TP Tat T 2 ou,

DiDj
We see that:
d.’l?i 9 del d.’l?j
=" =gii——
dt dt dt
So the g-norm is conserved.

= 9i;9" ¢ g = 97 qiq; = 2H (2, p)

Exercise 1.24 (Exponential Map) Assume g(z) = 1 for large x so that the solutions z(¢) of Equation
(1.12) exist for all time. The solution with initial conditions #(0) = = and #(0) = £ is called the geodesic
through (z,&). Define the exponential map:

E:R"xR"— R" E(z,§) =x(1)

where x(t) is the geodesic through (x,&). Prove that this geodesic is given by z(t) = FE(z,t£). Prove that
there exists a constant ¢ > 0 such that:

|E(x,&) —x — & < ¢
and deduce that:

OF,
&”ck

Ok e
(iIZ’,O) - 8§k (.I',O) - 52]7

2L,
0,0

(x,0) =0



Solution 1.24 Given a point p and velocity &, let z(t) be the geodesic defined for ¢ € [0, 00) with z(0) = p
and 2£(0) = £. Then observe that z,(t) = z(rt) satisfies:

d*at ,d?z 9 do? da” ; dad (rt) daz*(rt)
T 1) = 2 01) = 2T (art) S (1) 2 () = 1 () 2D A

Thus z, is a geodesic with initial velocity r¢ and initial point p, and it follows from uniqueness of ODE
solutions that this is the unique solution. It thus follows that x(t) = x,(1) = E(p, t£).

To show the estimate, note that the geodesic equations yield:

2< 2
<l < ol

Here C' = sup,cga(|T%]) (which exists because g = 1 outside of a compact set) and we use the fact that

|2 is conserved. Also we may assume that the norm is just the typical Euclidean norm when writing the
estlmate, since on any compact set K there exists a ¢ with |v]> < Ck|v|* where |v] is the usual Euclidean
norm. Again, we may use the “compact support” of g to conclude that we can pick a constant so that

such an inequality holds for all z € R™.

dx
- Sol< [ 151 < i

1) —2(0) - o) < [ d—f(t) -Gols [ 5w -Gol<cler

This is precisely our estimate.

Thus we may write:

This estimate implies the derivative identities, as it gives us the Taylor expansion:

EF(z,€) = a* + & + [€)PhF (2, €)

Thus we have:

OE"

77 = 0 +0()

OE"

g = % TO)
oE" 04202 Oh oh

0xto&I QxidEI

Exercise 1.25 Suppose that ¢ : R" — R" is a diffeomorphism and:

g(z) = ¢"h(x) = dp(x)" h(¢(x))de(x)

Prove that every geodesic x(t) for g is mapped under ¢ to a geodesic y(t) = ¢(x(t)) for h. Deduce that
the concept of the exponential map extends to manifolds.



Solution 1.25 We calculate using Einstein notation. The geodesic equations for the metric h = ¢*g and
a curve x are:

ko 14 dr? 1 kg 4l ko 4 k da’ da?
9r1Om @ ag¢ 5( 0;(gr10m " 0;0") + 0;(grOmd* 0:¢") — O (gru0id*0;8')) —— 7 dr
d 1
= gOm@"0; ¢l i (5i¢nangklam¢kaj¢l + 91100 " 0, + G110 8 0,0;0" + 0;0" 05, Gr10m d" 0i ' + 1100 O

' v
dt dt

+ 9510 ¢"0;0;¢" — 5m¢nan9klai¢k3j¢l — gu0n0:¢"0;0" — g110,0"0,,0,;¢")

dzt da?

ar’ k !
= guOmd"0; ¢ +gkz(9 ¢"0;0;¢"—— 7 dl

1 n kg 4l n ko na k ldxdxj
5 (0ug 056" 0606 + 0D " 0 h8! — 0,910 " Dr" 050 ) -

From the second to third line we cancel some terms in the %( ..) part and reorganize the rest of the terms
into two pieces. On the other hand the geodesic equations for the metrix g and the curve ¢(z) is:

d

. 1 d
gmkﬁ(ﬁb(x)j) + 5(3k91m + O1Gkm — OmGrt) 0i " v 3'¢ld—xt

dx' da?
_ .4k
= 900"~ + dt2>

These two systems of equations for x merely differ by composition with the Jacobian (0¢) on the m index

1 pdrt o da?
5(3k91m + 01 9km — Omgr1)0id Eaﬂb ar

of the latter equation. Thus the second system vanishes if and only if the first does. This shows that
geodesics are coordinate independent.

Exercise 1.26 The covariant derivative of a vector field £(s) € R™ along a curve z(s) € R™ is defined by:

(vgk—ngrm@

2,7=1

A submanifold L C R™ is called totally geodesic if Vi(s) € Ty L for every smooth curve z(s) € L. Prove
taht L is totally geodesic if and only if T'L is invariant under the geodesic flow.

Solution 1.26 First suppose that L were closed under geodesic flow. Pick a p € L and pass to coordinates
U about p where pis 0 and LNU ~ R*NU C U C R™. Then any geodesic  with z(0) = p = 0 and

4r(0) = ¢ has:

dax* “ dx® da?
== E 2227 =
dt2 |p (Z et 1) dt dt )|p n

Now suppose that the the left term were not in TL,. Then for small time e we have %£(e) = tn + O(t?)

and thus x(e) = 0+ €€ + %n + O(€®) (in coordinates). Now we may split  into n = 1z, + 1,1, a parallel



and non-parallel component. Then we may write:
2 2

1
x(e) = €€ + %ml + %UL +O(€%) = v (e) + 56277L + O(€)

Taking € — 0 we see that the result must have some non-zero perpendicular component to x(e). Thus it
must be the case that € T'L,, and thus that — (> 7, I%E€7)|, € TL, for any p € L. This implies that

V(%(s)) € Tys)L since %(s) is parallel to L for any such curve.

Conversely, suppose that L is not closed under geodesic flow. Then there exists a geodesic x with
2(0) = p € L and %(0) € T'L,, but z(t) ¢ L for some t.

Exercise 2.1 Let (V,w) be a symplectic vector space and ® : V' — V be a linear map. Prove that & is
a linear symplecticmorphism if and only if its graph

Tp = {(v,00) €V & Vv e V)

is Lagrangian in V' @ V' with symplectic form @ = (—w) ® w.

Solution 2.1 If & is Lagrangian then for any v € V' we have:
O @ Pv,wd Pw) = —w(v,w) + w(Pv, Pw) = P*w(v, w) — w(v, w)
Thus ®*w(v, w) = w(v,w) for all v,w € V if and only if I'y is Lagrangrian.

Exercise 2.9 Identify a matrix with its graph as in Exercise 2.1 and use a construction similar to that
in Exercise 2.8 to interpret the composition of symplectic matrices in terms of symplectic reduction.

Solution 2.9 Let (V;,w;), i = 1, 2,3, be three symplectic vector spaces with ¢ : Vi — Vo and ¢og : Vo —
V3 with graphs 'y C Vi@V, I'y3 C Vo V3. Then consider the symplectic vector space V) & Vo® Vo Vs with
symplectic form (—w; ) Bwo@(—wq)Bws. Furthermore consider the subspaces I'1o® 193 and W = Vi AG V3.

The first subspace is Lagrangian and the second is coisotropic with symplectic perpendicular W¥ =
0B A®0. We can see that this is equal to the symplectic perpendicular because it has dimension 4n—3n = n
and is contained in the symplectic perpendicular by direct computation. Under symplectic reduction we
have the identification W/W* =V} @ V5 with symplectic form (—w;) & ws. Furthermore:

(T12 ® To3) N W = {v1 © ¢12(v1) © v2 D Pa3(v2)|1(v1) = va}
and thus under the quotient the Lagrangian I'15 @ ['s3 goes to the Lagrangian:

I3 = {v1 ® v2|vy = Poz(P12(v1))}

Thus we can interpret composition of symplectomorphisms in terms of taking a product of their graphs
and then performing a symplectic reduction along W.



Exercise 2.10 Let (V,w) be a symplectic vector space and W C V' be any subspace. Prove that the
quotient V' = W /(W N W*%) carries a natural symplectic structure.

Solution 2.10 We simply define the symplectic form @&([v], [w]) := w(v,w). To show that this is well-
defined, suppose that v = v+a and w’ = w+b with a,b € WNW¥. Then w(v',w") = w(v, w) +w(a, w) +
w(v,b) + w(a,b) = w(v,w). To show that @ is non-degenerate, suppose that we see that &([v], [w]) = 0 for
some [v] and all [w]. Then w(v,w) =0 for v € W and all w € W, so v € WY NW and thus [v] = [0]. This
proves non-degeneracy. Bilinearity and anti-symmetry follow from the definition.

Exercise 2.11 Let A = —AT € R®*"" be a non-degenerate skew-symmetric matrix and define w(z,w) =
(Az,w). Prove that a symplectic basis for (R?",w) can be constructed from the eigenvectors u; + iv; of A.

Solution 2.11 Consider the matrix ¢A. This matrix is Hermitian, thus it admits a diagonalization with
eigenvectors x; = u; +iv; and real eigenvalues \;. This is also a diagonalization of A with eigenvalues —i\;.
Since A is non-degenerate, \; # 0 for any i. Now observe that iA(u; + iv;) = —Av; + iAu; = Nu; + 1\0;.
Since A is real, it preserves real and imaginary vectors, so it follows that Av; = —\;u; and Au; = \;v;. This
implies that A(u; — iv;) = —A\;(u; — v;). Thus eigenspaces occur in conjugate pairs, and the eigenvectors
are of the form {£\;,..., £\, }.

Now let e; = ﬁuz and f; = +——v; (here we take only the \; > 0). Then we have:

u i |us)
w(es, fi) = (es, Afi) = (ei, e) = 1

Thus the subspace e;, f; is symplectic. Furthermore, we can choose the u; +iv; so that u; +ivq, ..., u, *iv,
is orthonormal. Since each span span(e;, f;) = span(u;,v;) is a union of the +); eigenspaces, and since
eigenspaces of a self-adjoint operator are perpendicular, it follows that the spans span(e;, f;) are mutually
symplectic orthogonal. Thus ey, fi,...,e,, f, is a symplectic basis.

Exercise 2.12 Consider a smooth family of symplectic forms w;(z, w) = (z, A;w) on R?*". Prove Corollary
2.4 by considering the family of subspaces E; C C?" generated by the eignevectors of A; corresponding to
the eigenvalues with positive imaginary part.

Solution 2.12 This is a less general version of Exercise 2.61. See that exercise: the proof is essentially
the same, except here it is over [ instead of a general simply connected neighborhood U C R™.

Exercise 2.13 Show that if § is any skew-symmetric bilinear form on the vector space W, there is a
basis w1, ..., Un, V1, ..., v, of W such that B(u;,vy) = d;; and all other pairings 5(b1, b2) vanish.

Solution 2.13 Let ¢ : W — W* be the map v — [(v,-) and let B = ker(¢). Let by,..., b, and take any
complimentary subspace V' C W so that W =V @ B. Then |y is non-degenerate on V since B(u,v) =0



for some u € V and all v € V implies that S(u,v 4+ b) = 0 for all v € V and b € B as well, thus that
u € BNV ={0}. Thus we can find a symplectic basis ey, f1,..., €, fn on V by Theorem 2.3.

Exercise 2.14 Show that if W is an isotropic, coisotropic or symplectic subspace of (V,w) then any
standard basis for (W,w) extends to a symplectic basis for (V,w).

Solution 2.14 If W is symplectic, then we can take a symplectic basis ey, fi,..., ek, fr and a symplectic
basis ex11, fxt1,s-- -, €n, frn of W¥. The union of the bases is then a symplectic basis of V, since pairings of
a basis element from W with those of W* are necessarily 0.

Now let W be isotropic. We prove that we can extend any basis to a symplectic basis of V' inductively. If
W is 1-dimensional, this is trivial. Now suppose W is £ > 1 dimensional and let by, ..., b; be a basis. Then
W' = span(by, ..., bx_1) is an isotropic subspace and by the induction assumption we may extend its basis
to a symplectic basis aq,b1,...,a5_1,bp_1,€1, f1,- - €n—k—1, fnk_1. Let U = span(aq,by,...,a5_1,bp_1)
and observe that U“ = span(eq, fi1,...,€n—k-1, fn_k—1). Now observe that there must exist an e; or f;
such that w(e;, by) # 0 (resp. w(fi,bx) # 0). Otherwise by € U Nspan(by, ..., bx_1)* = span(by,...,bx_1),
contradicting that b; is a basis. Thus we may rescale the e; or f; to an ay so that w(ay,b;) = 1. Then the
resulting aq, by, ..., ag, by is a symplectic basis of its span, and we extend this to a symplectic basis of V.

Then given a standard basis of W, ey, f1,...,en, fn,b1,...,bx and let U = span(ey, f1,...,€n, fn). Then

b1, ..., b, spans an isotropic subspace of the symplectic space U¥, so we may use the previous result to
find an extension of by, ..., b, to a symplectic basis of U“, and then combine the bases to get an extension
€1, fl: <oy Epy fn7&17b17 s 7akabk-

Exercise 2.15 Show that any hyperplane W in a 2n-dimensional symplectic vectorspace is coisotropic.
Thus W* C W and w|w has rank 2(n — 1).

Solution 2.15 Simply observe that any 1-dimensional subspace is isotropic. Indeed, w(v,v) = 0 for
any v. Then any hyperplane H has H“ 1-dimensional, and thus isotropic. Then since the symplectic
perpendicular to an isotropic space is coisotropic, we have (H“)“ = H is coisotropic.

Exercise 2.16 Let (V') denote the space of all symplectic forms on the vector space V. By considering
the action of GL(2n,R) on Q(V') given by w +— ®*w show that Q(V') ~ GL(2n,R)/Sp(2n).

Solution 2.16 By Theorem 2.3 we know that the action of GL(2n,R) is transitive. Furthermore, the
stabilizer of any symplectic form is isomorphic to the symplectic group. In fact, if w = ®*wy then:

Stab(w) = {®~1S®|S € Sp(2n)} = & 'Sp(2n)®
Thus the map GL(2n,R)/Sp(2n) — Q(V) given by:

[q)] — (I)*WO

10



is bijective and smooth with respect to the smooth structure on the homogeneous space GL(2n,R)/Sp(2n).
Note that to prove the smoothness of this map really rigorously we need to know a slice theorem for Lie
group actions, which we will not develop here.

Exercise 2.17 (The Gelfand-Robbin quotient) It has been noted by physicists for a long time that
symplectic structures often arise from boundary value problems. The underlying abstract principle can be
formulated as follows. Let H be a Hilbert space and D : dom(D) — H be a symmetric linear operator
with a closed graph and a dense domain dom(D) C H. Prove that the quotient:

V = dom(D")/dom(D)
is a symplectic vector space with symplectic structure:

w([z], [y]) = (z, D*y) — (D*z,y)

Solution 2.17 First we prove that w is well-defined and symplectic. First suppose that [2/] = [z] so that
¥ =x+a, a € dom(D). Then:

w([2'], [y]) = (=, D*y) + (a, D*y) — (D*x,y) — (D"a,y) = (x,D"y) — (D*a,y) + (D"(a — a),y)

= (z,D"y) — (D*z,y) = w([z], [y])

And similarly w([z], [v']) = w([z],[y]) if [y'] = [y]. The form is anti-symmetric by construction. To show
that it is non-degenerate, suppose that w([z], [y]) = 0 for all [y] and some [z]. Then:

<$C,D*y> o <D*$,y> =0

for all y € dom(D*) and x € dom(D*).

To see that A is a Lagrangian subspace, first observe for any z,y € Ay we have D*x = D*y = 0, thus
w([z],[y]) = 0. Thus Ay C A§. Similarly, if y € A§, then (D*z,y) — (x, D*y) = (x, D*y) = 0 for every
x e Ao.

Exercise 2.18 Consider the linear operator:

d 0 -1
D=Jy— Jo=
Odt 0 <1 0)

on the Hilbert space H = L?([0,1],R*") with dom(D) = W,*([0,1],R*"). Show that in this case the
Gelfand-Robbin quotient is given by V = R*" x R?" with symplectic form (—wp) x w.

11



Solution 2.18 The definition of dom(D*) is all of the y € H such that the map = — (y, Dx) extends
from dom(D) to H. This is the map:

! dz
Jo—)dt
o [ nG)

Now observe that if this map extends to H then y is differentiable in the weak sense, thus in W'? C
L?. Furthermore the Sobolev inequalities imply that W12 functions are continuous in dimension 1, and
continuity implies absolute continuity on a compact domain. Thus dom(D*) C Wh2([0,1],R?*"), the
Sobolev space with no boundary limitations. Furthermore, for any y € W'%([0,1],R*") and any z €

dom(D) we have:
! dx ! dy
Jo—)dt = [ —(Jo—, z)dt
/0<y, Odt> /O <Ddt’x>

There is no boundary contribution due to the vanishing of z at the ends of [0, 1]. Thus W'2(]0, 1], R*") C
dom(D*) and they are therefore equal.

Continuing, we may characterize dom(D*)/dom(D) as R** @ R?*". Indeed, we have [z] = [2/] if and only
if we have = — 2’ € W,?([0,1], R*"), i.e if and only if 2:(0) = 2/(0) and z(1) = /(1) (the other conditions
are automatically satisfied). The map to the quotient can thus be given by x — (z(0),y(0)) € R?*" & R?".
Then if we consider [z], [y] € V = dom(D*)/dom(D), we see that:

dy

(i) ) = [ n'gpoa) = (G ahde = [ 5wt = (ay(1).2(1) = (oy(0).2(0)

This is precisely the symplectci from wy ® —wy.

Exercise 2.24 (i) Show that if ® € Sp(2n) is diagonalizable, then it can be diagonalized with a symplectic
matrix. (ii) Deduce from Lemma 2.20 that the eigenvalues of ® € Sp(2n) occur either in pairs A, A\™! € R,
A\ A € St or in complex quadruplets A, A™%, A\, A7, (iii) Work out the conjugacy classes for matrices in
Sp(2) and Sp(4).

Solution 2.24 (i) Let ® € Sp(2n) be diagonalizable by GL(2n,R). Let ey, ..., e, be a basis of eigen-
vectors. Then w(e;, e;) = w(Pe;, Pej) = N\ A\jw(e;, €;), so either w(e;,e;) =0 or \;A\; =1 for any pair e;, e;
of eigenvectors. In particular, let V) = span{e;|Pe; = )\gﬂei}. Then V¥ = @yeo@) vV (here by o(®)
we denote the set of eigenvalues with |A\| > 1 so that we don’t double count). To see this, observe that we
have @y eq (@) vV C V) and by dimension counting they must be equal. Thus wly, is symplectic, and
® splits as a direct sum of symplectic maps ® = &, @ ¢ with ¢, : V) = V), and & : V¥ — V.

The above discussion implies that V' splits symplectically as V = @yeq@)Va with @ splitting as
Preo(@)Pr. Each @) has only two eigenvalues, AL or only 1is A = 1. By the symplectic Graham-
Schmidt procedure, we know that we can find a symplectic basis e;, f; such that for every i we have
e;, fi € V) for some A\ and so that the collection of e;, f; with this property form a symplectic basis for V.
Thus we can get ® into the block form @,®, via a symplectic transformation and it suffices to show that
we may find a symplectic change of basis on each V) individually to get ®, into diagonal form.

Thus we may assume that we are in one of two cases. In the first case, & : V' — V has two real
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eigenvalues, A and A~!. In the second case, A has only one eigenvalue, 1. In the second case, ® = T
and is already diagonalized. Thus we may restrict to the first case.

Therefore assume that ® : V' — V is a symplectomorphism with only two eigenvalues, A and A\~! with
IA| > 1. Thus V. =V, @ V,-1. Now let e € V). Since V) C e we must be able to pick an f € V\-
so that w(e, f) = 1 by non-degeneracy. Now consider W = span(e, f). Then V\ N f¥ C e N f¥ = W*
and likewise e N Vy-1 C e N f¥ = W¥. We have dim(V, N f¥) = dim(V)) — 1 since f* is codimension
1 in V and it does not contain V) since e € V), and likewise dim(e* N Vy-1) = dim(Vy-1) — 1. Thus
WY = (Van f<) @ (Vi-1 Ne?). We see that for any w =u+v € W¥ with u € VA N f¥ and v € Vy-1 Ne,
then ®w = Au + Ao € W¥. Thus we may recurse our argument onto V' = W%, and by repeating it
acquire a symplectic basis e, ..., ex, fi, ..., fr where ®e; = Xe; and @ f; = A1 f;. This concludes the proof.

(i) By Lemma 2.20, for a symplectic matrix S, A € o(S) implies that A™' € o¢(S). Furthermore
A € o(S) implies A € o(S) because S is real. Thus we have 3 cases. If A is real, then A = A\ X occurs in a
pair A, A\™'. If X is complex and unit norm, then A = A~! so A occurs in a pair A, A € U(1). If X is both
complex and non-unit length, then A\, \, \™', A\~! are all distinct. So A occurs in that group of 4.

(iii) Here we will use the fact that if two real matrices M, N are similar over GL(n,C) if and only if
they are similar over GL(n, R).

For Sp(2) ~ SL(2), we may use the fact that SL conjugacy classes are equal to GL conjugacy classes.
Thus matrices in Sp(2) are classified up to conjugacy by their Jordan normal form. These are:

(on) (0 4) (53) (02

In the Sp(4) things get more complicated.

Here n € U(1) and X € R.

0 0 0
0& 0 0 A0 00
00 &t 0 (o )\—100>
00 0 ¢t

Exercise 2.25 Use the argument of Proposition 2.22 to prove that the inclusion
O(2n)/U(n) — GL(2n,R)/GL(n, C)
of homogeneous spaces is a homotopy equivalence. Prove similarly that the inclusion:
O(2n)/U(n) — GL(2n,R)/Sp(2n)

is a homotopy equivalence.
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Solution 2.25 First observe that we have the following commutative diagram.

U(n) —  0O(2n) — O(2n)/U(n)
3 3 !
GL(2n,C) — GL(2n,R) — GL(2n,R)/GL(n,C)

The rows here are fibration diagrams F' — E — B. This yields a commutative diagram composed of the
two resulting homotopy long exact sequences.

— mi(U(n)) —  m(0(2n) — m:(0O(2n)/U(n)) — mi—1(U(n)) —
\ 3 \ \
— m(GL(2n,C)) — m(GL(2n,R)) — m(GL(2n,R)/GL(n,C)) — m_1(GL(2n,C)) —

The maps of m;(O(2n)) — m(GL(2n,R)) and m;(U(n)) — m(GL(n,C)) are isomorphisms due to the
existence of the polar decomposition. Any M € GL(2n,R) decomposes as M = QR with Q = (MM™T)/?
positive definite and R € O(2n). We can then use the retraction hy(M) = (MM7T)~/2M. This essentially
relies on the fact that the space of positive definite matrices is retractable to the identity, via the same
homotopy.

We may thus apply the five lemma to conclude that the maps m;(O(2n)/U(n)) — m;(GL(2n,R)/GL(n, C))
are isomorphisms. Whiteheads lemma then implies that since the natural map ¢ : O(2n)/U(n) —
GL(2n,R)/GL(n,C) given by taking MU(n) — MGL(n,C) (as cosets) is a homotopy equivalence, since
it induces an isomorphism on all homotopy groups.

An identical argument will work if we replace GL(n,C) with Sp(2n). The retraction in that case uses
the polar decomposition described in Proposition 2.22.

Exercise 2.26 Let SP(n,H) denote the group of quaternionic matrices W € H"*™ such that W*W = 1.
Prove that SP(n, H) is a maximal compact subgroup of Sp(2n, C) and that the quotient Sp(2n, C)/SP(n, H)
is contractible.

Solution 2.26 Again we will use the polar decomposition. Any M € GL(2n,C) decomposes as:
M = QR = (MM")"Y2R

Here () is positive definite and R is unitary.

Now we argue that (MMT')/2 € Sp(2n,C). First observe that M € Sp(2n,C) implies M, MT €
Sp(2n, C) since then MTJM = J implies:

J=M")IM Tt =MITMY) T = J=—J'=-MJ MY = MJMT
J=J=MTJM = (M) JM

Now we prove the analogues of Lemma 2.20 and 2.21, which are the same as in the real case.
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We have MT = JM~'J~! so M7T is conjugate to M~! and thus they have the same eigenvalues.
Therefore M and M~! have the same eigenvalues, and thus if A\ € o(M) has A # +1 then \7! € o(M).
Since det(M) = 1, we must therefore have an even number of —1 eigenvalues and since dim(M) = 2n, we
have an even number of the remaining 1 eigenvalues as well.

Now observe that if if v and w are in eigenspaces of M with eigenvalues A\, X' and X # A~! then they
are symplectic orthogonal. Indeed:

w(v,w) = w(Mv, Mw) = AN w(v,w)

So if AN # 1 then w(v,w) = 0. Then we can argue again that if P = PT and P € Sp(2n,C) then
P> € Sp(2n,C) for all € R. We can check this by splitting C?>" into eigenspaces. If v,w in non-
complimentary eigenspaces then w(P*v, P*w) = w(v,w) = 0 and otherwise:

w(P, P*w) = (A1) %w(v, w) = w(v,w)

Thus (MM")=2/2 € Sp(2n,C) for a € [0,1] and thus the homotopy h;(M) = (MM")=*/2M is a
retraction of Sp(2n,C) to U(n) N Sp(2n,C).

Now we show that U(2n) N Sp(2n,C) = U(2n) N GL(n,H) = SP(n). We show this on the level of Lie
algebras, i.e u(2n) Nsp(2n,C) = u(2n) N gl(n, H). We see that:

U(2n)={(é g)\AT:—A,DT:_D,c:_BT}

sp(zn,«:):{(g1 g)|O:OT,D:—AT,B:BT}

gl(n,H):{(é g)m:fx,cz—é}

Now we verify u(2n) Nsp(2n,C) C u(2n) N gl(n, H).

D=-A"T=(-A=A (C=C"=CT=-B
Now we verify u(2n) Ngl(n,H) C u(2n) Nsp(2n, C).
D=-A"=(AN'=-A" C=-B=C" B=-C=p"
Thus we have the equivalence of the groups as subgroups of U(2n). This shows that h; retracts Sp(2n, C)

to SP(n), this that the inclusion SP(n) — Sp(n, C) is a homotopy equivalence.

To prove that this is maximal, we show that any compact subgroup G C SP(n) is contained in a
subgroup conjugate to SP(n). This is again the same as the real case. That is, we take the Haar measure
dG associated to the Lie group G and take A = | vea M TMdG. A is then a symmetric positive definite
map which is invariant under conjugation by elements of G, and thus G C U(A), the unitary group with
respect to A.
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Furthermore A is symplectic. This is a poorly elaborated point in the book! We see this as so:

ATJA = / MM JINTNIGIG
MxNeGxG

1
= / MTMJM'MdG + / ~(MTMJNTN + N'NJM* M)dGdG
MxMeACGXG MXxXNeEMXN—-A

1
=J / dG + / ~(M"MJN'N — M"MJNTN)dGdG = J
MxMeACGXG MxNeMxN—-A

Thus we may use the conjugation map G — U(2n) given by M +— A~Y2MAY? to see that it is
conjugate to a subgroup of SP)(n).

Exercise 2.27 Let:

X -Y
\p_(y e )GGL(Qn,R)

What is the relationship between det¥ € R and det(X + 1Y) € C?

0 -1

Solution 2.27 We take the J matrix to be the block matrix J = @}, ( 1 o

) instead of the block

—I
matrix J = ( ? 0 ) Now observe that both determinants are invariant under GL(2n, C) conjugation,
so if A is diagonalizable we can assume that W is a block matrix of 2 x 2 of the form:
Ay 0 .00 0
Ay oo ;. —b;
v | O A O | carenr) Ai_(“’ b@)
0 0 ... A,

The determinant of such a matrix is the product of the determinants, so:
det(W) = [ [ det(A;) = [ [ aF + ¥}

Furthermore, if we let A be the diagonal matrix A;; = a;6;; and similarly for B, we have det(A +iB) =
[1;(ai 4 ib;). These are related by |det(A 4 iB)[* = det(¥). Since diagonalizable matrices are dense, this
formula holds for all matrices W.

Exercise 2.28 The Siegel upper half space 9, is the space of complex symmetric matrices Z = X +1Y €
C*** with positive definite imaginary part Y. The symplectic group Sp(2n) acts on S,, via fractional linear
transformations ¥, : S, — 5, defined by:

A B
_ -1 _
0,7 = (AZ + B)(CZ + D)™, \If_(c D)
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Here we use the notation of Exercise 1.13. Prove that &, is well-defined: if Z € S,, then the matrix is
CZ + D is invertible and ¥,Z € S,,. Prove that:

U, P,.7 = (V)2
for &, U € Sp(2n) and Z € S,,. Prove that the action is transitive. Prove that:
U(il) =1l <= VY eU(n)

Deduce that the map ¥ — W, (i/) induces a diffeomorphism from the homogeneous space Sp(2n)/U(n) to
the Seigel upper half space S,,. Thus the quotient Sp(2n)/U(n) inherits the complex structure of .S,,.

Solution 2.28 We prove everything except that the maps are well-defined, which we postpone until the
end. First observe that if:

v (A BY ¢_(EF\ 4y_(EA+FB EB+FD
“\c o “\G H ~\GA+HC GB+HD

Then we have:
V.7 = (BE(AZ + B)(CZ+ D)™ + F)(G(AZ + B)(CZ + D)™ + H)™*

= (BE(AZ+ B)+ F(CZ+ D)) (CZ+ D) '((G(AZ + B)+ H(CZ + D))(CZ + D)™ 1)
= (BE(AZ+ B)+ F(CZ + D))(G(AZ + B)+ H(CZ + D))™*
=(FA+FC)Z + (EB+ FD))((GA+ HC)Z + (GB + HD))™' = (®V),Z
So the map is a group homomorphism into complex automorphisms of S,,.

To see the group is transitive, it suffices to check that the map sp(2n) — TS, induced by the group
representation is surjective. This then implies that the group action is locally transitive in a neighborhood
of any Z € 5, and then by a continuity argument and the fact that S, is connected we may conclude that
the group action is in fact globally transitive.

We thus need to check that for any N € 7,5, (i.e an N = U + iV with U,V symmetric) there is a
family of symplectic maps 4(®,)|—g = S with S € sp(2n) with £((®;).Z) = N. Recall that sp(2n) can
be described as the set of matrices splitting into blocks A, B,C, D in the obvious way with D = —A”,
B = BT and C = CT. Now observe that:

d d

E((<I>t)*Z)yt:0 = E«Z +t(AZ + B)+ O(t*))tCZ + +1 +tD + O(t*)) )] s=0

_ %((z +HAZ + B) + O(2))(1 — t(CZ + D) + O(2)))r—o

=AZ+B—-7C07Z —-7ZD=AZ+ZAT" + B—7CZ

Thus we just need to prove that we can pick an A, B, C, D satisfying the above identities (to be in sp(2n))
such that AZ + ZAT" + B—ZCZ = U +1iV. We can assume C' = 0. Then in terms of Z = X +iY we want
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AX + B+ XAT = U and AY + YAT = V. Here B is symmetric and A can be anything. But since the
map A — AY + Y AT is the composition of the map A — Y A (which is a bijection because Y is positive
definite) and the symmetrization map P — P+ PT we know that it is surjective. So we can certainly pick
an A. Then we may simply pick B = U — AX — XA, D = —A” and C = 0 to find the S € sp(2n) of
interest. This proves transitivity.

Now we identify the stabilizer of a point. We pick i1. Then we see that we want to find symplectic ¥
so that the blocks A, B, C, D satisfy:

(iA+ B)(iC+D)'=il; iA+B=-C+iD;B=-C,A=D

This is in fact the condition that WJ = JW. Thus W is in the stabilizer of i1 if and only if ¥ € GL(n,C) N
Sp(2n) = U(n). Since we have in general that a space H with a transitive group action G is diffeomorphic

to G/Stab(p).

Exercise 2.32 Prove that the orthogonal compliment of a Lagrangian subspace A C R?" with respect
to the standard metric is given by A+ = JA. Deduce if u,, ..., u, is an orthonormal basis of A then the
vectors uy, . .., Uy, Jui, ..., Ju, forms a basis for R?” which is both symplectic and orthogonal. Relate this
to the proof of Lemma 2.31.

Solution 2.32 Since J is orthogonal, the vectors Juq, ..., Ju, are independent from each other. Now
observe that since w(v,w) = (v, Jw), we see that w(e;, e;) = w(Je;, Je;) = (e;, Je;) = 0 and (e;,e;) =
(Je;, Jej) = —w(Je;, ej) = —0;;. These calculations show that the set ey, ..., e,, Jei,..., Je, are a set of

2n orthonormal (thus an orthonormal basis) and standard with respect to the symplectic form.

One way to interpret this in terms of Lemma 2.31 is to note that this elucidates the relationship between
the Lagrangian and its perpendicular Lagrangian, relating them via the unitary transformation J.

Exercise 2.33 State and prove the analog of Lemma 2.31 for isotropic, symplectic and coisotropic
subspaces.

Solution 2.33 (i) We prove that if V is isotropic, coisotropic or symplectic then so is WV for any
symplectic map. This is clear: w(v,w) = 0 for all v € V' and some w if and only if w(Vv, Yw) = 0. Thus
(UV) =¥V« and V¥ C V (resp. V C V%) if and only if (¥V)¥ C UV (resp. ¥V C (V¥V)“). Likewise if
wly is non-degenerate then w|yy = V*w|yy is as well.

(ii) We prove that symplectic maps are transitive on isotropic, symplectic and coisotropic subspaces of
the same rank. First suppose that V' is isotropic of rank & < n. Then we can pick a Lagrangian L with
V C L and a matrix:

X
-7

Y

with orthogonal columns forming a basis of L, and where the first £ columns form a basis of V. Then the
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matrix:
X -Y
Yy X
is a map taking the isotropic space spanned by ey, ..., e to V. Note that ¥ is in fact unitary.

For the coisotropic case, where the rank of V' is k > n, we can simply observe thav V¥ is isotropic
and find a symplectic ¥ taking V“ to the standard rank 2n — k isotropic space as above. Then since
(UV¥) = UV we may conclude that V' goes to the symplectic perpendicular of the standard rank 2n — k
isotropic space. Again, ¥ here is unitary.

Finally, if V' is symplectic of rank 2k then we can take a symplectic bases g1, h, ..., gk, hx for V and
Jki1, Pkats - - -5 Gn, hy for V¥ and then use the map ® given by g; — e;, h; — f;.

(iii) Finally, we characterize these Grassmanians as homogeneous spaces. The symplectic case of
SGr(n, k) is simple enough: the stabilizer of a symplectic subspace of rank & is isomorphic to the symplectic
group Sp(2k) so SGr(n, k) ~ Sp(2n)/Sp(2k). For the isotropic case, IGr(n, k), we observe that any choice
of X +1iY € U(n) yields a rank k isotropic space as the span V' the first k columns of M (where M is
as above). Two such M yield the same V' if and only if they are related by right multiplication by an
element of O(k) x O(n — k) (an orthogonal transformation preserving the span of the first k£ columns and
their ortho-compliment). So we have IGr(n, k) ~ U(n)/O(k) x O(n— k). Finally, for coisotropic CGr(n, k)
we use duality via taking the symplectic perp to see that CGr(n,k) ~ IGr(n,2n — k) ~ IGr(n, k) ~
U(n)/O(2n — k) x O(k —n).

Exercise 2.34 Consider the vertical Lagrangian:
Avery = {2 = (2,9) € R*|z =0}
Use Lemma 2.30 to show that £(n) is the disjoint union:
L(n) = Lo(n) U X(n)

where Ly(n) can be identified with the affine space of symmetric n x n matrices and ¥(n) consists of all
Lagrangian subspaces which do not intersect Ay transversely. The set 3(n) is called the Maslov cycle.

Solution 2.34 We simply prove that a Lagrangian L can be given as a graph over Ay, if and only
if it is transverse to Aye¢. But observe that Ayt = JAner = (Aper)t. Furthermore an n-dimensional
subspace V of R?" can be described as a graph over Ay, if and only if orthogonal projection V — Ay, is
an isomorphism, i.e has no kernel. But the kernel of this map is precisely V N Ayere. So there is no kernel
if and only if VN Ayt = 0, i.e if and only if V' and A, are transverse.

Exercise 2.36 The Maslov index of a loop A : R/Z — L(V,w) of a Lagrangian subspace in a general
symplectic vector space is defined as the Maslov index of the loop ¢ — U='A(t) € L(n), where ¥ :
(R* wy) — (V,w) is a linear symplectomorphism. Show that this definition is independent of . Show
that if one reverses the sign of w then the sign of the Maslov index reverses also.
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Solution 2.36 For the first part, simply observe that if ¥, ® : (R** wy) — (V,w) are two different
symplectomorphisms then W~tA(t) = U=1®(®LA(¢)). Thus if we denote the constant path ¢t — U~1d as
U~1® then we have pu(¥~'®) = 0 and therefore:

(@A) = p(WTHA) 4+ 2pu(0TH ) = p(TTA)

by the composition axiom. This shows that if (U, w) and (V, w’) are two symplectic vectorspaces, ¥ : U — V
is a symplectomorphism and A : R/Z — L(U,w) is a path of Lagrangians, then pu(A) = pu(WA).

For the second part, by the previous argument we may reduce to the case of (R*",wy) and (R*", —wy).
It suffices to check that Maslov index for the generating homotopy class, Ag(t) ® R"™1 C C & C"! with
Ao(t) = ™R changes sign, and due to the direct sum formula it even suffices to check for Ay(t). The
isomorphism ¢ : (C,wy) — (C, —wyp) is just conjugation z +— Zz, so under this map the family Ag(t) = e*™R
gets sent to cAg(t) = e ?™R. This is the same curve with the reverse parameterization, thus p(cA) =
H(A(=)) = —p(A).

Exercise 2.37 Let ¥ : R/Z — Sp(V,w) be a loop of linear symplectomorphisms. Prove that the
corresponding loop I'y : R/Z — L(V x V,(—w) X w) of Lagrangian graphs has twice the Maslov index, i.e

n(ly) = 2u(P).

Solution 2.37 We see that A(t) = {v® Y(t)vjv € V} = (1 & U(t))Ao(t) where Ay(t) = {v B v|jv € V}
and 1 @ ¥(t) is the family of symplectomorphisms given by v @ w +— v @ ¥(t)w. Thus we have:

p(A(1)) = p(Ao(t)) + 2u(1 @ W (#)) = 0+ 2(u(1) + p(W(1))) = 2u(¥ (1))

Here we apply the product axiom, then the direct sum axiom, then the homotopy axiom.

Exercise 2.40 Prove that every anti-symplectic linear map has determinant (—1)". Prove that every
anti-symplectic linear map preserves the linear symplectic width of subsets of R?".

Solution 2.40 For the first part, suppose that W is anti-symplectic. Then:
(—1)"W" = (—w)" = (V*'w)" = det(V)w"

So det(V¥) = (—1)". Here by w™ we mean the nth wedge power of w.

For the second part, consider a subset A C R**. We observe that a ball B**(r) can be mapped into A
via a symplectic map if and only if it can be mapped in via an anti-symplectic map. Indeed, we have the
standard involutive anti-symplectic map ® given by e; — fi, fi = e; which fixes any ball B**(r). Thus if
we have an affine symplectic (resp. anti-symplectic) ¢ : B*"(r) — A then 1) o ® is an affine anti-symplectic
(resp. symplectic) map B**(r) — A.

Now for an anti-symplectic affine map ¢ consider ¥(A). Then if £ : B?*"(r) — A were an affine
symplectic map to A, then ¥£® is a symplectic map B**(r) — (A). Furthermore if £ : B>"(r) — ¥(A)
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is symplectic, then 1) ~1£® is a symplectic map B**(r) — A. Thus we have:
w(A) = sup{ar?|y(B*(r)) C A for some 1) € ASp(R*")

= sup{nr?|¢(B*(r)) C ¥(A) for some & € —ASp(R**) = w(y(A))

Exercise 2.46 Let E C R?" be an ellipsoid and define the dual ellipsoid by:
E* = {v e R*"|{v,e) < 1Ve € E}
where (-, -) is the standard inner product on R?". Prove that:
E" = E,(VE) = (97)'E"

for U € Sp(2n).Prove that the symplectic spectrum of E* is given by (1/r,,...,1/r;) where (rq,...,r,) is
the symplectic spectrum of E. Deduce that the dual of a linear symplectic ball is again a linear symplectic
ball.

Solution 2.46 First we show that (VE)* = (¥T)"1E*. Indeed, we see that:
(v,€) = (v, T We) = ((T7)"0, Te)

Thus (v,e) <1 for all e € E if and only if ((U7!)Tv, We) < 1 for all Ve € WE. This implies that £* and
(PE)* are symplectomorphic. Thus it suffices to show that E = E** for standard ellipsoids, which will
follow from the last statement.

Now suppose that E has spectrum (rq,...,r,). Then E = {e|(e, Re) < 1} where R = diag(r1,...,7n).
Now suppose that v € E where E = {v|(v, R"*v) < 1}. Then for any e € E we have:

[(v,e)]> = (R™Y%0, RY?e) < (v, R"){e, Re) < 1
Thus v € E*. If on the other hand (v, R"'v) = ¢ > 1 and e ¢ E then w = ¢~ '/2R~1v satisfies:
(w,Rw) = ¢ (R, RR"") =c (v, R"1v) =1
Thus w € E. But then we have:
(w,v) = c (v, R") =2 > 1

so e & B*. Thus E = E* and we are done.

Exercise 2.49 Let (V,w) be a symplectic vector space and J be a complex structure on V. Prove that the
following are equivalent. (i) J is compatible with w. (ii) The bilinear form g;(v, w) = w(v, Jw) is symmetric,
positive definite and J-invariant. (iii) The form H : V x V' — C given by H (v, w) = w(v, Jw) + iw(v, w) is
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complex linear in w, complex anti-linear in v, satisfies H(w,v) = H(v,w) and has a positive definite real
part.

Solution 2.49 (i) = (ii). We have:

g (v,w) = w(v, Jw) = —w(Jw,v) = —w(J*w, Jv) = w(w, Jv) = g;(w,v)
so gs is symmetric. Also ¢g;(v,v) = w(Jv, Jv) > 0 unless v = 0 and:

g;(Jv, Jw) = w(Jv, J*w) = —w(Jv,w) = w(w, Jv) = g;(w,v) = g;(v,w)
So gy is positive definite and J-invariant.

(i) = (iii). We evidently have H(u + v,w) = H(u,w) + H(v,w) and likewise for the other entry
since H is a sum of R-bilinear maps. Now if ¢ = x + iy € C we have:

H(cv,w) = gs(cv,w) +iw(cv, w) = g;(zv + yJu,w) + iw(zv + yJo, w)

= 29 (v, w) + yg,(Jv, w) +izw(v, w) — iyw(w, Jv)
= 2g;(v, w) + yg;(v, Jw) + izw(v, w) — iyg,;(w,v)
= zg(v,w) — yw(v, w) + izw(v, w) — iyg, (v, w)
= (z — iy)(g9s (v, w) + iw(v,w)) = ¢H (v, w)

Notice that we are careful to only use the compatibility between g; and J here, which are guaranteed by
(7). A nearly identical calculation shows H (v, cw) = c¢H (v, w). We also have:

H(w,v) = g;(w,v) + iw(w,v) = g;(v,w) —iw(v,w) = H(v,w)
Finally we see that H(v,v) = g;(v,v) + iw(v,v) = gs(v,v) > 0 unless v = 0.
(ii) = (i). For any v # 0 we have wy (v, Jv) = g;(v,v) = H(v,v) > 0 if (iii) holds. Furthermore:

w(Jv, Juw) = %(H(w, w) + Hiv,w)) = %(—z’H(v,w) 4+ (Hv,w) = ;(H@, w) — o, w)) = w(v, w)

Exercise 2.52 (i) Prove the continuity of the map 7 : Met(V) — J(V,w) in Proposition 2.50 as follows.
If V =R? and w = wy then an inner product g € Met(R?**) can be written in the form g(v, w) = w? Gv
where G' € R?* 2" ig positive definite. The formula wq(v, w) = (Jov)Tw = g(Av,w) determines the matrix
A = G7'Jy. Prove that the g-adjoint of A represented by the matrix A* = G~!ATG = —A. Prove that
tghe g-square root of the matrix P = A*A = —A% = G JI'G™1J, is given by:

Q _ G—1/2(G—I/QJEG—IJOG—1/2>1/2G1/2

Deduce that the map G — Jg = Q~'G~1J, is continuous.

(ii) The algebra here is also just a reformulation of that in the proof of Lemma 2.42. Use the current
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method to give an alternative proof of this result.

(iii) Deduce from (ii) that a complex structure J is w-compatible if and only if it has the form J =
U1 JoW for some ¥ € Sp(2n).

Solution 2.52 (i) We observe that for any v, w we have:
g(Av,w) = vT ATGuw = v' GG AT Gw = g(v, GTTATGw) = g(v, A*w)
Thus we must have A* = G7'ATG. Furthermore:
9(v, Aw) = —g(w, Av) = —g(A™w, v) = g(v, —A"w)

so A* = —A. Now consider P = A*A = G~'ATGA. We have that R = G'/?2PG~'/2 = G~12ATGAG™'/?
is a symmetric positive definite matrix, and thus R = OTAO for some orthogonal O and diagonal positive
A. We may thus define the square root as R'/? = OTAY20. Note that the map R — R'? can be defined
around any multiple of the identity AI with A > 0 using the Taylor series for v/A + z, which has radius of
convergence \. Thus we can see that R — R'/? is a continuous (in fact, smooth!) function of the entries of
R by noting that RY/2 = (A + (R — \I)/? (where the right-hand side is defined using the Taylor expansion
about M) for A greater than any eigenvalue of R. A similar discussion holds for the map M — M~! (in
fact we can use the formula M1 = det(M)~! - adj(M) which show that M~! can be written in terms of
smooth functions in the entries of M when M isn’t singular).

Thus the map G — Q = G~Y2RV2GY? = G=V2(G='2JI G~ JyG~1/?)Y/2GV? is smooth and we just
need to verify that ) satisfies all of the properties we want. We certainly have Q*> = G~Y/2RG'/? = P.
Furthermore we have:

g('U, Qw) _ UTGG_1/2R1/2G1/2'LU _ UTG1/2R1/2G1/2U} _ ’UT(GI/2R1/2G1/2)T’U} _ g(Qv,w)

Finally we see that since R is positive, R'/? is positive and thus @ is because it is conjugate to R*/2. Thus the
Q given by the above formula is the g-square root, and we may conclude that the map G — Jg = Q 'G~1J,
is smooth due to it being a matrix product of smooth matrix-valued functions of the entries of G.

(ii) Let z; = wu; £ iv; and +i); (with A; > 0) be the eigenvectors and eigenvalues of A = G~1J,.
Since A is real and anti-self-conjugate with respect to g, A must have imaginary eigenvalues coming in
conjugate pairs, with corresponding eigenvectors u; &+ iv; which are g orthonormal. In this diagonal basis
Q = (A*A)Y? is the simply the diagonal matrix with entries \;. Now observe that A(u;+iv;) = \;(iu;—v;),
so Auj; = —\jv;, Av; = MNu;. Thus Jou; = Q71 Auj = —vj and Jgv; = uj. In other words, this is a standard
basis for Jg. Furthermore we have:

w(vs, ug) = g(Avi, uj) = g(Aus, uj) = Nidy;
and similarly w(u;, vj) = —X\;dij, w(v;, vj) = w(u;, uj) = 0. Thus we may set e; = Mg, fi = A to get

a standard basis for w which is g-orthogonal. Note that in this basis Jg is still standard, since the change
of basis u;,v; — e;, f; commutes with Jg (it is essentially just rescaling on the eigenspaces).
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(iii) If J = U1 Jy¥ for some ¥ € Sp(2n), then:
w(v, Jw) = (v, JL O JgWw) = (v, U1 JL JoWw) = (v, ¥ Tw)

Thus w(-, J-) is positive definite. Furthermore w(Jv, Jw) = w(v,w) because J is a composition of three
symplectomorphisms. Conversely, suppose J is w-compatible. Then by the work in (ii) it is conjugate to
Jo via a symplectic transformation (given by the basis e; and f;).

Exercise 2.53 Here is yet another proof of the contractibility of J(V,w). This proof illustrates in a clear
geometric way the relationship between Lagrangian subspaces, complex structures and inner products.
Given a Lagrangian subspace Ay € L(V,w) there is a natural bijection:

j(‘/, (,U) — EO(V,W,A()) X S(AO)

where Ly(V,w, Ag) is the space of all Lagrangian subspaces which intersect Ag transversely and S(Ag) is
the space of all positive definite quadratic forms on Ay. Note that, by Lemma 2.30, the space Lo(V,w, Ag)
is contractible. The above correspondence is given by the map:

J = (JAOJ gJ|A0)

where g;(v, w) = w(v, Jw) as above. Show that this map is a bijection.

Solution 2.53 First we show injectivity. First we see that w(v, Jw) = w(v, [w) for any v,w € A,.
Similarly, for any v € JAg = IAy and w € Ay we have:

w(v, Jw) = w(Jv', Juw) = w@ w) =0 =wl" w) = w(V", Iw) = w(v, [w)

where v = Jv' = Iv” and v',v” € Ag. But Ag and JAg = IAg span V. So w(v, Jw) = w(v, [w) for any
v €V and w € Ay, and it follows that Jw = Tw. Furthermore, suppose that Iv = Jw for some v, w € JA,.
Then v = Iv' and w = Jw' for some v/, w’ € Ay. Furthermore:

' =T =Tv=Jw=Jw =—u

So v' = w'. But then v = Iv' = Jw' = w, so v = w. Since J and I carry JAy to Ay bijectively, this implies
that they agree on both JAg, i.e Jv = Iv for v € JAg. Since Ag and JAy together span V', this implies
that they agree on V.

Now we prove surjectivity. To see this, simply note that given a Lagrangian A transverse to Ay and a
metric g on Ay, we have an isomorphism induced by w, A — A, given by w — w(-,w). We may therefore
define J as a map Ag — A by the identity:

i.e J: Ay — A is the unique map such that w(-, Jw) = g(-,w) € A;. We may then extend this to a map
J :V — V by defining Jv = Jv for v € Ay, Jv = —J v for v € A, and then extending by linearity. We
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may also extend g simply by setting g(v,w) = g(Jv, Jw) for v,w € A and g(v,w) = 0if v € Ag,w € A.
We then have that A and Ay are perpendicular subspaces with respect to g. Furthermore, J?> = —1 and
g(v,w) = g(Jv, Jw) (this is easily checked on a split basis in V = Ay & A).

Exercise 2.54 Let w and g be given. Show that there is a basis for V' which is both g-orthogonal and
w standard if and only if there is a Lagrangian subspace A whose g-orthogonal compliment A is also
Lagrangian.

Solutuion 2.54 If there is such a basis ey, ..., e, f1,..., fa, then we can take A = span(e;) and At =
span(f;). Conversely, if two such Lagrangians exist, then we can construct such a basis via a version of
the symplectic Graham-Schmidt. More specifically, we can proceed by induction: if V' is 2-dimensional,
we can pick the orthogonal basis e € A, f € A, picking e arbitrarily and f so that w(e, f) = 1, which we
must be able to do since A+ is transverse to A. If dim(V') = 2n, then we pick an arbitrary non-zero e € A.
Then there is a unique vector

Exercise 2.55 Let J € J(V,w). prove that a subspace A C V' is Lagrangian with respect to w if and only
if JA is the orthogonal compliment of A with respect to the inner product g;. Deduce that A € £(V,w) if
and only if JA € L(V,w).

Solution 2.55 We see that:
w(v,w) =0 for all v,w € A <= g,(v, Jw) = —w(v, JJw) = —w(v,w) =0 for all v € A, Jw € JA

By dimension counting, then, we must have A+ = JA. Since JA = A if and only if J?A = A = (JA)*,
we see that A is a Lagrangian if and only if JA is.

Exercise 2.56 Suppose that J; is a smooth family of complex structures on V' depending on a parameter
t. Prove that there exists a smooth family of isomorphisms ®, : R*® — V such that J,®, = ®,J,.

Solution 2.56 Let I = (0,1) be the open interval. Consider J(t) : V® C — V ® C and consider the
sub-bundle £ — I of I xV ®C — I defined by E(t) = ker(J(t)—il) C V®C. This is a vector-bundle over
the interval, so it is trivial. Therefore we can pick n non-vanishing, linearly independent global sections
u;(t) + iv;(t). Point-wise these u; and v; satisfy J(t)(u;(t) + iv;(t)) = iu;(t) — v;(t), so J(t)v;(t) = u;(t)
and J(t)u;(t) = —v;(t). Using the map V@ C ~V @iV — V given by u + iv — u + v, we may identify
the sections u;(t), Ju;(t) = v;(t) as 2n sections of V. They are point-wise linearly independent, since the
vectors w; + iJu; and u; — iJu; were independent in the complexification. Thus the map &, : R** — V
given by e; — u;(t), fi — v;(t) gives the desired family of isomorphisms.

Note that if J; were compatible with wy (the standard form, not time-dependent) then we could have
chosen ®; to be symplectic. Indeed, in that case, we can pick u; + iv; to be orthogonal with respect to
gy, = w(+, Ji+) via the argument in Paragraph 2 of Solution 2.61, and the resulting map described above
would then be symplectic since then w(u;, v;) = gs(us, Jv;) = gs(ui, u;) = 1 and w(w;, ;) = w(v;,v;) = 0.
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Finally, this argument can be extended to a family .J; of complex structures on a trivial bundle £ =
U x R?* over U, to show that there is a family of bundle automorphisms ®; : £ — F such that J®, = ®,J.
We may or may not take J; compatible with wy; in the latter case, which case we may take ®; to be
automorphisms of F as a symplectic bundle. Again, the same argument as above will work, except this
time we pick sections u; + iv; over I x U.

Exercise 2.57 Prove that the real 2 x 2 matrix:

a b
J=
(£3)
satisfies J? = —1 if and only if det(J) = 1 and a = —d. Deduce that Jy and —J; lie in different components
of J(R?). Prove that each component of J(R?) is contractible.

Solution 2.57 J? = —1 implies that the eigenvalues are 4i, and since imaginary eigenvalues for real
matrices occur in conjugate pairs, this implies that there must be 1 7 eigenvalue and 1 —i eigenvalue.
Therefore J? = —1 if and only if det(J — ) = A2 — tr(J) + det(J)A\? + 1. This proves the first part.

To prove the second part, we recall that J(R?) ~ GL(2,R)/GL(1,C) with connected components
distinguished by the determinant. Thus if two complex structure are related by an orientation reversing
transformation, then they are in separate components. Indeed, J, and —.J; are related by the transforma-
tion e; — €9, €5 — €1, which is determinant —1. So they are in different components.

To prove the third part, we observe that there exists a G € GL™(2,R) is connected: these matrices can
be retracted via hy(M) = (MMT)~*/2M to SO(2) = U(1), which is certainly connected. Thus there exists
a family of maps M (t) such that the path J(t) = M(t)JoM (¢)~! has Jy = J(0) and J = J(1) for any J in

the component of Jj.

Exercise 2.58 Let V be a 2n-dimensional real vector space with complex structure J. Show that the
space of all skew-forms w which are compatible with J is convex.

Solution 2.58 Simply observe that if wy,w; are two such forms, then w(t) = twy + (1 — t)wy is anti-
symmetric. Furthermore g = tguw, + (1 —1)g., and metrics are convex, so w(t)(-, J-) is certainly a metric.
This also means that w(t) is non-degenerate, since w(t)(v, Jv) > 0 for all v # 0, so w(t) : V — V* is
injective. This proves that any convex combination of compatible forms is compatible.

Exercise 2.59 A linear subspace W C V is called totally real if it is of dimension n and:
JW W = {0}

If W C V is a totally real subspace show that the space of non-degenerate skew forms w : V' xV — R which
are compatible with J and satisfy W € L£(V,w) is naturally isomorphic to the space of inner products on
W and hence is convex.
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Solution 2.59 We define the map as so. First, let 75 denote projection to A along JA. Then we can
define a metric g on V' from a metric g on W via:

g(v,w) = g(mav, Taw) + g(maJv, maAJw)

This metric is J-invariant, restricts to g on W and has A 1 JA, and it’s easy to see that it is the unique
metric satisfying these properties. Now we define the map

wy(v,w) = —g(v, Jw) = —g(mpv, TpAJw) + g(TAJV, TAW)

Now we have
wg(v,w) = g(”a JQU) = _g(‘]vaw) = _g(wv JU) = _wg(w7v)

Thus w, is an anti-symmetric. It is also non-degenerate, since w,(v, Jv) = g(v,v) > 0 for any v # 0.
Finally, we have:
wy (v, w) = —g(v,0) + g(0,w) =0

for v,w € A and likewise for JA by J invariance. So both A and JA are Lagrangian, and this defines a
map ¥ : Met(W) — Symp(M) which maps metrics on W into compatible symplectic forms on V' which
have W as a Lagrangian. This map is clearly injective, since if we have two metrics g, h on A and v, w € A
with g(v,w) # h(v,w), then w,(v, Jw) # wp(v, Jw). Furthermore, the formula for w, is smooth in g.

Conversely, to see surjectivity, we consider any w satisfying those properties with respect to W. We
can take the metric g; = w(+,J-) and see that it is a J-invariant metric, restricting to h = g5 on A and
having A 1 JA. Thus we have h = g and thus w, = w, so ¥(h) = w, and the map V¥ is surjective. Note
that the map w — ¢y is the inverse to W, and it is smooth, so the map V¥ is in fact a diffeomorphism.

Exercise 2.61 Prove that a symplectic vector bundle as defined on p. 69 is locally symplectically trivial.

Solution 2.61 We are given a rank 2k vector-bundle £ — X over some base X with a smooth non-
degenerate section w of E* A E*. Pick a metric h. Then there exists a unique anti-self-adjoint, invertible
section A of End(E) satisfying h(v, Aw) = w(v,w). We may consider the section J = (A4*A)7Y/2A =
(—A%)71/2A. Here (A*A)~'2 is as in Solution 2.52, see that problem for a more thorough discussion.
We see that if we define g(v,w) = h(v, (A*A)"/?w) then h is a new metric satisfying g(v, Jw) = w(v, w).
Furthermore J? = —1, so J has n i eigenvalues and n —i eigenvalues. Let K C E ® C be defined as
K =ker(J —i1).

Now let p € X be any point and U ~ B™ C R" be any simply connected neighborhood of p. Then
K|y is a line bundle over U, and thus is thus topologically trivial. Thus it possesses n independent global
sections z; = u; + v;. In fact, we can make these orthonormal with respect to g|x (extended to £ @ C
as a Hermitian inner product then restricted to K). We may first pick a non-vanishing section u; + iv; of
K|y, then setting K, = span(u; + iv;) pick a section uy + ive in K| (which is also trivial), then define
Ky = span(u; + ivy, us + ivy) and proceed thus. Note that the real sections u; are perpendicular in E due
to this choice.

By the standard argument (see Solution 2.11) we have Au; = —v;, Av; = u;. Thus via the map E®C ~
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E@®iE — E viau+iv — u+v we get 2n independent real sections u;, Ju; satisfying w(u;, v;) = g(u;, Av;) =
6;ij and w(u;, u;) = w(v;,v;) = 0. Thus the map ¢ : U x R?* — E|;; given by (z,¢;) = vi(z), (z, fi) = wi(z
has the property that ¢¥*w = wy and constitutes a symplectic trivialization over U.

Exercise 2.64 Let E — M be a 2n-dimensional vector-bundle with complex structure J and F — oM
be an n-dimensional real sub-bundle. This means J,F, N F, = {0} for all ¢ € M. Prove that there exists
a symplectic bilinear form w which is compatible with J and satisfies F, € L(E,,w,) for ¢ € OM. Prove
that the space of such forms is contractible.

Solution 2.64 We apply an identical construction to that in Exercise 2.59. That is, define the following
fiber-bundle isomorphism ¥ : Met(F) — Symp; o(£). Here Met(F) denotes the bundle whose fiber is the
metrics on F,. Symp; (&) denotes the bundle whose fiber is the space of J-compatible symplectic forms
on F with F' as a Lagrangian. We want the isomorphism:

U(g) = wy, wy(v,w):=—g(mpv,mpJw)+ g(npJv, Tpw)

Note that since J varies smoothly and F' is a smooth sub-bundle, the section 7 of End(F) to F' along JF
is smooth. Thus the map ¥ is a smoothly varying map which is smooth as a map of the fibers. In fact, ¥
can be extended to a section of Hom(E* ® E*, E* A E*) which is fiber-wise linear!

This map is an isomorphism on the fibers by Exercise 2.59. Furthermore, the fibers of Met(F') are
convex, so since ¥ extends to a section of Hom(E* ® E*, E* A E*) we may conclude that the bundle
of symplectic forms also has convex fiber. A fiber-bundle with convex fiber has a contractible space of
sections, so the space I'(Symp; (F)) is contractible. Furthermore, since I'(Met (")) is non-empty (we can
run the usual partition of unity argument) I'(Symp; (E)) is also non-empty. So such an w exists.

To prove existence once we know convexity, we could alternatively apply a partition of unity argument
directly to textSymp; p(E). Namely, we take locally trivially patches U; (where E|y, is a trivial complex
vector bundle of rank 2n), find w; on each patch by taking the standard one, and then taking convex
combinations of these w; using a partition of unity to get a global w;.

Exercise 2.67 Define the notion ‘symplectic trivialization.” Show that a Hermitian line bundle has a
unitary trivialization if and only if its underlying symplectic bundle has a symplectic trivialization.

Solution 2.67 Let (Ey, wo, Jo,go) — X denote the trivial Hermitian vector-bundle with Ey = X x R?**,
wo(z) = wo, Jo(x) = Jo, go(x) = {-,-) and 7 : By = X x R* — X the standard projection map. We will
also use Fy to denote the underlying trivial symplectic bundle.

Let (E,w) — X be a symplectic vector-bundle of rank 2k. A symplectic trivialization is a bundle
isomorphism ¥ : By — E with ¥V*w = wg. Similary, let (E,w, J,g) — X be a Hermitian vector-bundle of
rank 2k. A unitary trivialization is a bundle isomorphism V¥ : Fy — F with V*'w = wqy, J¥ = ¥.Jy and
U*g =g.

Evidently, a unitary trivialization of a unitary bundle is also a symplectic trivialization of the underlying
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symplectic bundle. Now suppose that ¥ : (Ey,wo, Jo, g0) = (E,w, J, g) is a symplectic trivialization. Then
Ji = U LJ¥ and J, are two complex structures on Ey which are compatible with wy. By Solution 2.56,
there exists a symplectic bundle automorphism ® : Ey — Ej (connected to the identity in fact) such that
J1® = ®Jy. Thus VP has the property that (V®)*w = wy and JUP = Ud.J,. By the compatibility
condition, it follows that (V®)*g = go. Thus this is a unitary trivialization of F.

Exercise 2.68 Prove that the space of paths U : [0,1] — Sp(2n) of symplectic matrices satisfying
U(1) = ¥(0)~! has two components. Deduce that up to isomorphism there are precisely two symplectic
vector bundles (of every given dimension) over the real projective RP2.

Solution 2.68 Let ¥ : [0,1] — Sp(2n) be such a path. We single out two standard loops: Wy, ¥y :
[0,1] — Sp(2n) where Vy(t) = 1 and V(0) = R(A) & la,—2 € U(1) & Sp(2n — 2). Both of these ¥; are
evidently in our class of curves. We will show that every ¥(¢) is homotopic to exactly one ;.

First observe that any ¥ is homotopic to a curve such that ¥(1) = ¥(0). We can just take any curve
®(t) such that ®(0) = 1 and ®(1) = ¥(1), letting ®4(¢) denote the partial curve ®,(t) = ®((1 — s) + st)
and ®;1(t) = ®((1 — s) +s(1 —¢t))~'. Then ¥, = ;! o U o ®, (where o denotes path composition) is
a homotopy of curves with W,(0) = ¥,(1)~! and ¥;(0) = ¥;(1) = 1. Thus we may consider without
loss of generality that W(0) = ¥(1) = 1 and we may classify homotopy classes of these (we will still use
homotopies of curves where W (0) # W(1)).

Now, if ¥ and ¥’ are two such curves, and they are homotopic as curves S* — Sp(2n) with 0 —
1, then they are evidently homotopic as curves with W(0) = ¥(1)~!. Now let ®(¢t) = W,(¢), so that
[W1] € m(Sp(2n)) = Z generates the group. Let Wy (¢) and Wy (f) be as &, and &' above. Then
U, =W oWod, has [U] = [¥] + 2[¥,] for any of our ¥. Thus any curve is homotopic to a curve in the
m class of Wy or Wy, and thus to ¥y or ¥, itself.

Conversely, suppose that @ is a homotopy of curves with ®4(0) = ®o(1) = ®,(0) = ¢4(1) = 1 and
®,(0) = ®;1(1) for all 5. Let I'(t) = ®;(0) and let T'y and T';! be like @, and ®;! above. Observe that T’
itself is a closed curve, so [['] = [[';] = k[e] for some generator [e] of 71(Sp(2n)). Then ¥, =T 1o®, oT, is

) = U,(1) = 1. Thus we see that [®1] = [®o] + 2[T1] = [Po] + 2n[e]. Thus
the mod 2 homotopy class of a curve [®] with ®(0) = ®(1)~! is invariant up to homotopy through other

a homotopy of curves with ¥,.(0

such curves.

Thus we has established that there are two homotopy classes of our curves. Now consider a symplectic
vector bundle £ — RP% We may take RP? and split it along a circle into a disk D?, where the boundary
S1 ~ 9D? is identified with itself in RP? via the antipode map a : 0D? — 9D? E then pulls back to
the trivial bundle over D? since it is over a disk, coupled with a bundle map V¥ : E, — Eqpy. The data
of a line bundle over RP? is thus the data of a bundle map ® : E|gp2 — E|gp2 identifying E, with Eqy,)
and satisfying ®(p) = ®(a(p))~!. Identifying D? = R/2Z, such a map is given equivalently by a map
U : [0,1] — Sp(2n) with ¥(0) = ¥(1)~'. We can then recover the original map ¥ : 9D? — Sp(2n) by path
composing ¥ o V.

Two different trivializations of E over D? yield isotopic bundle maps on 9dD?. Indeed, any two such
trivializations are related by a bundle map U : E|p2 — E|pz. Since the space of such bundle maps
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If ® and ®' are two homotopic bundle maps on dD?, they yield isomorphic bundles.

Exercise 2.75 Use the formula (2.2) (the characterization as the Euler class) to calculate the first Chern
class of the normal bundle vepr in CP?.

Solution 2.75 We have the trivializations ®; : 31 x C — vep1 and ®y : 3y x C — vepr given by
Qi([1: 2 :0,w) =1: 2 :w and Po(zo : 1 : 0],w) = [22 : 1 : w]. Consider the section given by
([1: 2 :0],1) in the firsts patch and ([z, : 1 : 0], 23) in the second patch. The transition map ®,'®; sends
([1:z:0,1) = [L:21:1] = [1/z1:1:1/z) = ([1/21:1:0],1/21) = ([z2 : 1 : 0],22). So this is a
well-defined section. Furthermore it evidently intersects the zero section (identified with [z5 : 21 : 0]) at a
single point, where 2o = 0 in the second patch. The orientation of vgp1 is induced by the ambient space,
CP?, via a normal neighborhood and with this orientation the intersection is positive since the section is
locally the intersection of two holomorphically embedded CP'’s in CP?.

Exercise 2.76 Let L. C C"* x CP™! be the incidence relation:
L=A(z0]zel}={(z1,. .., 20 [w1,...,wp))|wjz, = wiz;V7y, k}

The projection 7 : L — CP" ! gives L the structure of a complex line-bundle over CP"~!. Show that
when n = 2 the first Chern number of L is —1, and hence calculate ¢;(L) for arbitrary n.

Solution 2.76 Consider the n = 1 case. We have two patches for L, each over one of the disks in CP!:
([z,1], A) = ([z,1], A(2,1)) and ([1, 2], \) = ([1, 2], A(1, 2)). Calculating the transition map, we see that:

([Z’ 1]7)‘> - ([Z’ 1]7)‘(2’ 1)) = ([17 1/2]72/\(17 1/2)) - ([1’ 1/'2]’)‘2) = ([Lw]?w_l)‘)

Thus the curve S' — Sp(2) induced by this bundle is § — =2 ie ¢;(L) = u(¥) = —1. For any n > 2,
we see that the inclusion map CP! — CP"! is covered by a bundle Lept — Lepn-1. Thus if we use ¢ (L)
to now denote the map Ho(CP" ') — Z we have (c;(L)|[CP']) = —1. But since Ho(CP"!) is generated
by [CP!], this completely determines c;(L) as a map.

Exercise 2.77 Prove that every symplectic vector bundle over a Riemann surface decomposes as a direct
sum of 2-dimensional vector bundles.

Solution 2.77 First observe that given a Riemann surface ¥, we can produce a plane bundle £ — 3
with ¢1(§) = z € Z for any z € Z. To do so, we simply pick a curve C' C ¥ such that ¥ — C has is
connected and has 2 boundary components. Then we consider the trivial bundle &, over X — C. Given a
map 7 : C' — Sp(2) with u(y) = 2z, we may produce a bundle £ over ¥ by using two trivializations: one over
a cylinder /normal neighborhood Uy C 3 with C' C Uy and Uy ~ (—1,1) x C' and one over U; = ¥ —C C X.

The transition map on Uy NUs =V — C >~ (—1,0) x C'U(0,1) x C' = Uyj2 U Uy can be the identity on
Ujz. On Us; we can define it using the identification Uy; ~ C'U (0, 1): if (z, s) are coordinates with respect
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to this diffeomorphism, then we want to use the transition map ®(x,s) = vy(z).

Now let C; = C. Take a set of n — 1 other splitting curves Cj,...,C, so that ¥ — LJ;C; is a union
of two disconnected surfaces »; and X5, each homeomorphic to a disc with n — 1 holes. Then using the
trivialization of £ on ¥ —C' to induce a trivialization of £ on X —L;C;, we see that the maps ¥, : C; — Sp(2)
given by the transition maps at the cycles are the identity for ¢ > 1 and equal to v for ¢ = 1. Thus by
construction Y, pu(¥;) = z.

Now to answer the question. If we are given an arbitrary vector-bundle E of rank k, then ¢1(E) = z € Z.
Pick any set of k integers z; so that ), 2z, = 2, and let § be bundles with those Chern numbers, i.e
c1(&) = #zi. Then the direct sum bundle F' = @;; has ¢;(F) = Y. c1(&) = Y,z = z. So its rank and
Chern number agree with F, and by naturality we conclude that F' ~ F.

Exercise 2.78 (i) Suppose that £ — ¥ is a symplectic vector bundle over an oriented Riemann surface
Y that extends over a compact oriented 3-manifold Y with boundary 9Y = Y. Prove that the restriction
E|x. has Chern class zero. (ii) Use (i) above and Exercise 2.77 to substantiate the claim made in Remark
2.70 that the Chern class ¢;(f*E) depends only on the homology class of f.

Solution 2.78 (i) If rank(E) = 2k > 2 we observe that by transversality considerations £ — Y admits
a global non-vanishing section. That is, if we choose any section ¢ : Y — FE and then perturb it to be
transverse to the 0-section, dimension counting tells us that the intersection is empty and thus that the
perturbed o is global and non-vanishing. This section restricts to a global non-vanishing section on X,
so we may split F as E' @ R? where rank(E’) = 2k — 2. Since E|y = E'|s & R?|y, we may assume after
repeating this process that rank(F) = 2.

In this case, consider a unitary connection A on E, picked after augmenting £ by some chosen compat-
ible complex structure J. Then the curvature Fy is a closed iR-valued 2-form on Y. By Stokes theorem
we thus have ¢;(F) = i fz Fy = ify dF'y = 0.

(ii) The easiest way to do this is to use stuff that’s a little outside of the scope of the book. Given a
complex vector bundle E over some X of (real) rank 2k, we can look at U (k) connections on F (for instance,
the Levi-Civita connection with respect to a Hermitian inner product structure). Let P be the associated
U(k)-principle bundle. The first Chern class can then be defined as a cohomology class via ¢;(F) =
c1(P) = 3=tr(Fa) where Fy € Q*(AdP) is a 2-form valued in the associated bundle P x () Ad(u(k)) and
tr: A?2(X) ® AdP — A%*(X) is the map induced by AdP — R given by h + tr(h) = (1,h) (and (,) is the
U (k)-invariant inner product).

Anyway, tr(F4) is closed (see Milnor-Stasheff, Appendix 3) so if f, f' : ¥ — X are two homologous
embeddings we have f(3) U f/(2) = 9C' for some 3-cycle and thus by Stokes theorem:

~or m

@@L =) =g [ ey = g [ (e =0

Exercise 2.79 Prove that every symplectic vector bundle £ — > that admits a Lagrangian sub-bundle
can be symplectically trivialized.
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Solution 2.79 Split ¥ into two Riemann surfaces with boundary ¥y and ¥; with ¥ = ¥y Ugs 37 and
C = ;C; a disjoint union of curves. Then the symplectic 2k-bundle £ with Lagrangian sub-bundle F
splits into two pairs of nested bundles F; C E; over each 3, for j € {0,1}. The data of the bundle is then
encoded in the transition maps V¥, : C; — Sp(2k), and the Chern class is defined as ), u(¥;).

Now observe that Fy|c, and Fi|o, are yield paths of Lagrangians in (R, wg) via the trivialization of
Ey and E; over C; C ¥y and C; C 3. Call these paths A? and A} respectively. Furthermore we must have
U;A? = A} since the F} glue together to form a sub-bundle of all of E. Thus we have 2u(¥;) = pu(A})—u(A?)

by the axioms of the Maslov index.

Now observe that the Maslov index factors as a homomorphism p : Hy(Sp(2k); Z) — Z rather than
w o m(Sp(2k)) — Z, since Hy(Sp(2k) ~ Ab(m(Sp(2k))) ~ m(Sp(2k)) ~ Z. It is then clear that if a
set of loops of Lagrangians I'; : S' — A(V,w) bound a map of a surface I' : ¥ — A(V,w) then the
sum of the Maslov indices is 0, since the union is then null-homologous. But the maps ¥g — (R wj)
and Y1 — (R%* wp) given by the trivialization do precisely this for the union of the curves A} and A}
respectively. So:

() = 37 (W) = 5(37 A = Y u(A) = 0

Exercise 3.1 Consider cylindrical polar coordinates (6, z3) on the sphere minus its poles S?—{(0,0,+1)}
where 0 < 0 < 27 and —1 < x3 < 1. Show that the area form induced by the Euclidean metric is precisely
the form w = df A dxs.

Solution 3.1 Here we use z instead of x3. The coordinate patch (6, z) is embedded in R? via (0, z) —
(V1 —z2cos(f),v1 — 22sin(f), z). The Jacobian of this transformation W is:

—v1—2%sin(0) — = cos(0)

DV, , = V1—=22cos(f) ——sin(f)
0 1

The pullback of the Euclidean metric is thus given by:

1—22 0
90, = (D‘IIH,Z)TD\IJO,Z = ( 0 1 )

1—z

The area form induced by this metric is thus \/det(gg.)df A dz = df A dz.

Exercise 3.5 Assume that 7 is a non-degenerate 2-form on M which is not necessarily closed. In this
case Hamiltonian vector fields and Poisson brackets can be defined as above. Show that:

{{F’ G}’H} +{{G>H}>F} + {{Ha F}7G} = dT(XFaXGaXH)

for any three functions F, G, H € C*(M).
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Solution 3.5 We can verify this with a calculation in local coordinates. Let 7;; denote the almost
symplectic form and 7% denote its inverse. f, g, h will denote the functions in question. Then we have:

{fig},n} +{{g, 2}, £} + {{h, [}, g} = (770, £0;9) Ol + Ok (7% 0 g0;1) Oy + Ok (T 0100 f ) kg
— 010, £0,gTMON + 70,0, f ;97O + 790, 040,97 Orh
L 0TI 0,g0, TS + 790,090, hTHOLf + 70,90, h MO, f
LTI O, RO + IO, O + T 0hD,D, f DL

Notice that the 2nd and 9th term in the second line cancel due to the anti-symmetry of 7 and the symmetry
of the Hessian 9,0, f. This occurs with all similar pairs of terms above, thus yielding:

{{f, g}, h} +{{g,h}, F} + {{h, £}, 9} = Ok 0 fO;97" Ok + Ok T 0,90; AT O, f + OkT 0,00, T O1g
= Oy X X)XF + 0pmiy X X)X F + Oy X X5 X2
= %(amjx;xgx,’f + Okt X, X7 XF + Opmiy X X9 XE — 0pmiy XU XIXE — Ok Xp XIXF — 00y XX X))
= Sdr(X), X, X;)
Here we use the formula:
0a79 = 0 (T* 10T = O (i) T 7Y + 100007 7Y + T3y 7 %0, 7Y

= 0o (13) 77 + 510, 7 + 670,

This implies 9, () 7% 7% = 9,79, and allows us to substitute a lower index 7;; and raise the indices of the

0;f,... gradient terms.

Exercise 3.7 Let S be a compact orientable hypersurface in the symplectic manifold (M, w). Prove that
there exists a smooth function H : M — R such that 0 is a regular value of H and S C H~'(0). Prove
that Xy (q) € L, for ¢ € S.

Solution 3.7 Take a tubular neighborhood N of S in M, parameterized by S x (—1,1). Since S and
M are orientable, the normal bundle vS is trivial and we can pick such a parameterization. Then take
any bump function 5 : (—1,1) — R which is supported on (—1,1), such that 3(0) # 0, and such that
f'(z) = 0 implies that = € (—oo, —1] U {a} U [1, 00) for some a # 0. We can take, for instance, the usual
bump function:

0 |z +a| >
exp(—(1 —4(z+a)*)™") |z +d| <

N =N

pie) = {

for some small a # 0. Now define:

—5(0) pEN

f(p):{ B(t)—B0) p=(tz)e N~ (~-1,1)x S
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This is a smooth function with 0 as a regular value and S C H~!(0), all by construction of 3. At a point
q € S we have w(Xpy,v) = dH(v) = 0 for any v € TS since H is constant on S. Thus by the definition
L, = (TS,)” of L as the symplectic perpendicular to 7'S, we have that Xy € L,.

Exercise 3.10 Show that there is an isomorphism:
TqoT"L~T,LOT L

and

_d)\can(q,O) (Ua U)) = wT(UO) - 'UT (wO)

for v, w = (vo, v7), (wo, wy) € T,L Ty L.

Solution 3.10 We pick coordinates z; in a neighborhood of ¢ € L, so that (z;,y;) are the corresponding
coordinates on T*L with y; = dz;. Then dAcan(g0) = > dy; A dx;. Now observe that d,, form a basis of
ker(m,) where 7, : TT*M — T M is map of tangent spaces induced by the projection map = : TM — M.
We have a natural map ¢ : T*Ly ~ T(0)(T"Lg) =~ ker(m,) C (TT*M)q0) given by > ay; — >, a;0y,,
which does not depend on our choice of ;. Thus we may define:

VT L=T,L®T,L U(v) = (m.(v), ¢ H(v))

In the basis this map is simply v = >, a;0,, + 0,0y, — (D, a;0x,, Y, bidz;) = (vo,v). We see that is v and
w are as above, then in our basis:

~Wean (v, W) = (Z dz; A dy;)(v,w) = =(07)i(wo)i + (w})i(vo):

i

= = Q_(w)idn) (Y (v0)idn) = (3 _(v1)ides) (3 (wo)idr,) = wi(to)i = vi(to) = ¥ Qean

Here Qcay is the usual symplectic form on V & V* given to TM, & T*M, ~ TM, & (T M,)*.

Exercise 3.11 Prove that there is a bundle isomorphism ® : TL & T*L — T(T*L) which identifies the
summand 7™ L with the vertical vectors. Prove that ® can be chosen to such that the composition dm o ®
restricts to the identity on the summand T'L and ®*wean = Qecan-

Solution 3.11 We want to illustrate an isomorphism 7*T'L @ 7*T*L ~ T(T*L). Pick an almost complex
structure J on T'(7T*L). We still have a natural isomorphism ker(7,), =~ 1%Ly for any ¢ € T*M, by the
same argument as in Exercise 3.10 (that argument was not dependent on ¢ being on the 0-section). This
extends to a bundle map ker(w,) — T*L over the bases T*L and L respectively, which is an isomorphism
on the fibers (as noted on p. 92), thus a bundle isomorphism ¢ : ker(m,) ~ 7*T*L.

Now let J be any almost complex structure on T'(7*L) compatible with wea,. Then Jker(m,) is trans-
verse to ker(m,) itself and thus T(T*M) ~ ker(w,) @ Jker(w,). Furthermore since Jker(7,) is transverse
to ker(m,), the restriction of m, to Jker(m,) gives an isomorphism Jker(w,.) ~ T'L on the fibers, thus an
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isomorphism Jker(m,) ~ 7T L given by 7, in one direction and the inverse r, : 7*TL, — Jker(m,). Thus
we have a splitting:

O m"TL@®n*"T*L ~ Jker(m,) & ker(m,) ~ T(T*L) O (v,v") = r(v) + ¢(v")

By the definition of r this has the property that 7.®(v,0) = (m.r(v),0) = (v,0). Furthermore, consider
coordinates x; about some 7(p) € U C L for p € T*L. Let v =Y, a;0,, € T' L), v* =Y, bidx; € T' Ly
and r(v) = ) .a;0,, + Y, ¢i0,,. Also let x;,y; be the corresponding coordinates on T(7T*L),. Then we
have:

Q" Wean = Wean(P(v,0), (0,0v")) =

Wean (r(v), p(v*)) = (Z dz; A dyi)(z ;0p, + Z ¢iOy,, Z b;9,,) = Z —bia; = —v*(v) = Qean(v, V")

Since ®(T*L) and ®(TL) are both Lagrangian by construction of ®, we can conclude that Qc,, (v, w) =
D*Wean (v, w) for all v,w € T TL & 7*T*L.

Exercise 3.12 (i) Any diffeomorphism ¢ : L — L lifts to a diffeomorphism ¥ : T*L — T*L by the
formula:

(g, v*) = (¥(q), dvo(q)""v*)

Prove that U*\ ., = Acan and hence ¥ is a symplectomorphism of T*L. (ii) Let Y : L — T'L be a vector
field on L which integrates to the parameter group v, of diffeomorphisms of L. Let X : T*L — TT*L
generate the corresponding group of symplectomorphisms W, of (7L, wean). Show that X = Xy is the
Hamiltonian vector field of the function H : T*L — R given by:

Solution 3.12 (i) Let ¢; be coordinates on L, with corresponding coordinates ¢;, p; on T*L. Then:

dWyq(v,v%) = dib(q)v + dip(q)~"v" + d(dv(q) ") (p,v)

Here d(di(q)')(p,v) is just a makeshift expression for the term contributed by the differential of the
g-depenedent part of di(q)~'v*. It’s important to note that the image of diy(q)~*v*, d(dy)(q)~ 1) (p,v) €
ker(m,) C T(T*L) (i.e both of those vectors are in the vertical part of T'(T*L)). Now we see that:

U Neanpg) = Ui o O pidas) = > O dib(q)™)Ipy) (O da;dip(q)])
i i J J
= Z dqjdlb ]dﬂ} Z pgd% szd% = can

(ii) Consider the family of diffeomorphisms 1), generated by Y. These act on T*L via (¢,p) —
(¢¢(q), (db™(q))p). Thus the generating vector field X must be of the form X = (Y, Z) in split co-
ordinates (i.e its T'L-coordinates agree with those of Y). Furthermore since X is symplectic, we have
0=LxA=dix\+ixd\, ie —ixd\ = dix\. Since w = —d\, we see that X is Hamiltonian with H = ix\.
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But we see that:
ix(gp) Mg = P(mX(q,p)) = p(Y(q))

This is the desired formula.

Exercise 3.13 (i) A Lagrangian for a variational problem on a manifold is a functional L : TM — R.
Formulate an appropriate version of the non-degeneracy condition which permits the Legendre transfor-
mation. What is the corresponding Hamiltonian function H on (T*M, wean)? Check that the equations for
L on T'M and the corresponding Hamiltonian equations are invariant under coordinate transformation.

Solution 3.13 (i) First we observe the following: given a manifold M, there is a natural map p :
T*(TM) — T*M given in coordinates x on U C M with corresponding coordinates (z, v, &, &,) on T*(T'M)
by (x,v,&:, &) — (2,&,). We see that this is well-defined as so: given new coordinates ' with x = ¢(z'),
we have v = do(x')v'. Let W : TM — TM be this corresponding diffeomorphism on 7M. Thus given a
function L : TM — R we have (V*L)(2/,v") = L(¢(2'),dp(x")v"). If we denote by d,L,d,L the x and v
parts of the gradient in these coordinates (and similarly for z’,v") we see that d, L = d,L(V(x)) o dp(z').
Thus if (z,v,&,,&,) — (z,&,) then (2/,0/,,&) — (2/,&) = (¢ (x),d,L o dp(¢p~())) = ¢*(x,&,). This
shows that p(z,v,,,&,) is a well-defined point in 7M.

With p given, we can now give an invariant form to the Legendre condition. A Lagrangian saisfies this
condition if and only if the map podL : TM — T*M is a diffeomorphism. This map respects the fibers of
TM,iepodL(p,v) = (p,v*) for any v and some v*, and it is thus sufficient for it to be a diffecomorphism
fiber to fiber, which (since the fibers are all vector-spaces) is equivalent to the non-degeneracy of the
Hessian in the tangent directions (thus the coordinate description of this condition in Ch. 1).

The corresponding Hamiltonian can be given as:

H(z,p) = (podL)(v)(v) — L(z,v) = p((po dL)"*(x,p)) — L(z, (p o dL) "' (z,p))

Here p(...) indicates evaluating the vector (p o dL)™!(z,p) € T M, against the dual vector p € T*M, =
(TM)E.

The fact that Hamilton’s equations are coordinate invariant follows from its invariant formulation: A
curve v : M — T*M satisfies the equations if and only if v*isd\ = v*dH. The fact that a diffeomorphism
on M lifts to a symplectomorphsim on 7% M guarantees that this equation is fully covariant under diffeo-
morphisms on M. Checking this in coordinates would just involve translating this into coordinates and
checking there, which is pretty uninformative so we’ll skip it.

We may as well check directly for the Lagrangian case. If we change coordinates x = ¢(z’) and
v =dy¢(z')V, then d,L = dyLodyd(x') + dyLod?¢(x')v and d,L = dyL o dy¢(x’). Thus:

d d N d , d ,
L0 = Ly Lo dpd(w)) = S(doL) o dudle!) + dy Lo “H(d,(x")
= %(dU/L(x’)) odyd(x') + dyL od (')
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Thus we see that:

d d
d,L — E(de) = (dy L — E(dv,L)) odyd(x') + (dyL o d2¢(z ) — dyL o do(z')v)
Thus the left side vanishes if and only if the right-side vanishes, and the two sides are equivalent to the

Euler-Lagrange equations in the x and 2’ coordinates respectively.

Exercise 3.18 This exercise establishes a relative form of Moser’s theorem that is often useful. Let M
be a compact manifold with boundary. Suppose that w; is a smooth family of symplectic forms that agree
on T, M for every x € OM and satisty, for every compact 2-manifold > and every smooth map u : ¥ — M

with 0¥ C OM: g

dt Js
Prove that there exists a smooth isotopy v : M — M such that:

wwy =0

o = id, wt’aM = id, w:wt = Wo

If w; = wp in some neighborhood of OM, prove that v, can be chosen equal to the identity in a (possibly
smaller) neighborhood of 0M.

Solution 3.18 As with the other applications of Moser’s argument, we just need to show that there
exists a family of 1-forms o, with do, = %wt and o, = 0 on Ty, M. To see this, we recall the long-exact

sequence of relative cohomology for the pair (M,0M)
oo HY(M;R) &5 HYOM;R) 25 H2(M,0M;R) &5 H2(M;R) & H2(OM;R) — ...

Now observe that by exactness of the above sequence, i*([%wt]) = 0 implies that %wt give a well-defined
element of the relative cohomology H?*(M,dM;R)*

Furthermore we have by assumption that 4(u*[S], [w]) = (u*[Z], 4w;) = 0 for every embedding

(X,0%) = (M,0M) and every time t. Every homology class in Hy(M,0M;R) ~ (H?(M,0M;R))*
can be represented this way 2, so this implies that [(Lw;,0)] = 0 € H?(M,0M;R) and of course that
¢*[0] = ¢*[(Lw;,0)] = [Lw;] = 0 € H*(M;R).This second condition implies that there exists a family of
1-forms o, € Q' (M) such that doy = 4w, (where smoothness of the family follows from similar arguments

to the proof in Theorem 3.17).

Now we want to show that o, can be chosen so that .0, = 0. The fact that [(£w;,0)] = 0 implies that
oy can be chosen to be cohomologous to 7,0,q; for some family oy of closed 1-forms on M. Since i,0,0; =

1Recall that the chain group C™(M,9M) in de Rham cohomology is defined as Q"(M) @& Q" 1(M) with differential
d(a, B) = (daiwa — dB). The map g, : H{(M,0M;R) — H'(M,R) is given by q.(c, 8) = a. If ixa = agpr = 0 then (o, 0)
defines a cocycle in this model, so « is in the image of H2(M,0M;R) — H?*(M;R). Also, 6, : H(OM;R) — H*1(OM;R)
is given by 4.0 = (0, 8).

2In dimension 2n with n > 3, we can represent any cycle by a smoothly embedded surface as so. Take a generic cycle
representative and perturb it to a smooth immersion. Due to transverse surfaces being non-intersecting in d > 5, we the
result is an embedded surface. In dimension 2n = 4 we can perturb to have an immersed surface with only transverse double
points. We can replace the double points with handles smoothly by using the model zy = 0 — zy = € in C2.
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(0,4.cr), this implies that there exists a family of closed 1-forms oy such that (Lw;, —i.on) = (03, —ioy)
is exact in H?(M,0M;R). In particular, oy satisfies d(o;, —i.q;) = (doy,i.0; — diya;) = 0. But since o is
closed, di,ay = 0 and thus i,0, = 0y|apn = 0 for all ¢.

Thus by Moser’s trick, we can set X; such that o; + ix,w; = 0 and take 1y to be the diffeomorphisms
generated by X; with initial diffeomorphism . In particular, i,0; = 0 implies that X; will vanish on M,
so that ¥|gn = id.

If w; = wp in a neighborhood V' of OM, we can take a tubular neighborhood N of OM so that U C V.
Any map u : (¥,0%Y) — (M,N) (i.e with u(0¥') C N) can be extended to a map v : (X,0%) —
(M,0M). We can do this by attaching a tube [—1,0] x 0% to 3 along 0X. We can then use the fact that
N ~ (—1,0] x OM is tubular to extend the map 9% — N to a homotopy [—1,0] x 0¥ — N with {1} x X
agreeing with the original map and {0} x ¥ C dM. Then since w; is constant in N, we have:

d [ . d/ o — 0
— [ W= — | wvw =
dt Js Tt dt )y

Thus, since we never used anything specific about the boundary in the above arguments (only results about
relative de Rham homology of a pair (M, A)) we can replace 0M with N in all of the above arguments
and our results carry over.

Exercise 3.20 Suppose that w; and 7; are two families of symplectic forms on a closed manifold M such
that wy = 79 and w; is cohomologous to 7; for all ¢ € [0,1]. Prove that for some € > 0 there exists an
isotopy v, such that ¢jw, = 7, for 0 <t <e.

Solution 3.20 We modify the Moser argument. We want to find a family of diffeomorphisms 1), with
1o = id and Yjw, = 7;. Differentiating in time we see that:

d d ., o d .
ETt = %d}t wy = P, (EM + dix,w;)

Here X; is the family of vector fields on M satisfying %z/;t = X; 0 y.

Exercise 3.21 Prove Darboux’s theorem in the 2-dimensional case, using the fact that every non-
vanishing 1-form on a surface can be written locally as fdg for a suitable f and g.

Solution 3.21 We want to show that every area form w on surface ¥ is locally symplectomorphic to the
standard form dx A dy on R2. For this purpose, consider a point p € ¥ and a neighborhood U of p.

First suppose that we know that every non-zero 1-form can be written as fdg for some choice of f and
dg. Then look at w|y € Q%(U). w is closed, so on U it is exact and there exist smooth f, g such that w = da
for a 1-form . We can assume that « is non-vanishing at p and in U (possibly after shrinking U) by adding
an exact form (perhaps a constant adu + ydv in coordinates). Thus we may assume w = d(fdg) = df Ndg.
Now observe that the map ¥ : U — R? given by ¥(p) = (f(p),g(p)) is a symplectomorphism. Tt is
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certainly a diffeomorphism since in coordinates u, v we have det(dy)du A dv = df A dg. Furthermore, it is
a symplectomorphism since V*wy = df A dg = w.

Thus we only need to know this fact that every non-vanishing 1-form over a contractible U can be
written as fdg. But this is clear: given any 1-form « on U, we can look at the line bundle ker(a)) over U.
Since U is diffeomorphic to the disk, we know that this bundle is trivial, so we can pick a global non-zero
section v € I'(ker(a)) C I'(TU). We can then integrate this vector field to obtain integral curves. This
foliation will be locally trivial, so we can take a smooth function g : U — R such that the level sets of ¢
are precisely the integral curves of v. Then dg is non-zero in U and ker(«) = ker(dg), so they differ by a
non-zero scalar a = fdg.

Exercise 3.22 (i) Let X be a closed 2-manifold. Prove that a symplectic (or area) form on X is determined
up to strong isotopy by its cohomology class. (ii) Prove a similar result for volume forms on closed
manifolds.

Solution 3.22 (i) First we prove that if two volume forms wy and w; on a closed n-manifold M are
cohomologous, then there is a family w; of cohomologous forms connecting them. Let M be a closed
n-manifold with symplectic forms wy, w;.

We claim that wy = (1 — t)wp + tw; is the family that we want. Evidently [w;] = [wo]. Furthermore,
wy = fuwp for some f, since A" (M) is the trivial bundle since it is a line bundle with a globals non-vanishing
section. We cannot have f = 0 anywhere, since this would imply that w; was degenerate there. Thus,
either f > 0 or f < 0 everywhere, and since fM Wy = fM w1, it must be the case that f > 0. Thus
wi = ((1 —t) + tf)wo is non-degenerate (and closed for dumb dimensional reasons).

Now consider a closed surface ¥ with wy, wy. Evidently if wy and w; are strongly isotopic then [wg] = [w1].
Conversely, suppose that [wg] = [w1]. Then as we have shown above, we have a connecting family w; of
cohomologous symplectic forms. Thus we may apply Moser stability (Theorem 3.17) to conclude that
there exists a family of diffeomorphisms 1; such that ¥jw; = wy.

(ii) We want to prove that if M is an n-manifold with two volume forms A\, Ay and [A\¢] = [A\1] then
there exists a family of diffeomorphisms v, with ¥y = id and {jw; = wy. By part (i), we just need to prove
the analog of Moser stability: that if there exists a family of cohomologous volume forms )\; connecting g
to A1 then there exists a family of diffeomorphisms v; with the properties above.

Suppose that such a family )\; exists. We want to find a family of diffeomorphisms ¢, with ¥;\s = Ao
(as in the book). Then A\; — A is a family of exact forms, thus there exists a family o, of n — 1-forms such
that %)\t = do;. Again, the fact that we can pick a smooth family o; of forms like this follows from de
Rham theory 3. Now we see that if X, is the generating vector field of 1), i.e satisfying %zﬁt = X, oy,

then:
d d ) d o d
0= E(AO) = %(% At) = Up (Lx, A + a%) = P (d(ix,\e) + E)\t)

, d
d(ix, ) + a)\t

3The lack of detail on this point in the book is getting disturbing to me, so I’'m going to discuss this in an Appendix at
the end of this document.
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Now observe that the map T,M — Ag_lM given by v +— (i,A), is an isomorphism for any p since \; is a

volume form. Indeed, if some v # 0 has (i,A;), = 0, then we could complete v to a basis v = vy, vq, ..., v,
and see that A\i(vy,...,v,) = 0, contradicting the fact that it is a volume form. Thus as in the symplectic
case, if we find a o, with do, = %)\t, we get a family of vectorfields X; uniquely determined by ix, \s = —o;

which satisfy d(ix,\¢) + %)\t. Thus we have found oy, X; and (by integrating X;) .

Exercise 3.28 Give examples of symplectic, isotropic, coisotropic and Lagrangian submanifolds of the
symplectic manifold R*/T" of Example 3.8.

Solution 3.28 Let M = R*/T with coordinates (z1,%s,¥1,%2). Let ¢ : R* — M denote the quotient
map. We freely refer to Example 3.8 for terminology and notation.

To find a symplectic subspace, observe that (as alluded to on the bottom of p. 89) we have an embedded
torus 72 C M. If we take the plane R? x 0 C R* and take its orbit O under I', then we get a disjoint
union of planes all in the orbit of R?. O is by construction closed under the I' action, and thus the image
q(O) C M is diffeomorphic to O/T", and it is a 2-d submanifold of M.

A fundamental domain of the action on O is given by the unit square F' = [0,1]> x 0 C R? x 0. The
g € I sending points in OF to other points in OF must fix the plane R? x 0 (otherwise OF and g(0F) will
be in disjoint planes) so they must be in Z? x 0. Such transformations simply act by the usual Z? action
on R?; thus the resulting quotient F/T' = ¢(F) ~ T?. Since O C R*, so is ¢(O) = ¢(F).

Any isotropic sub-manifold that isn’t Lagrangian will be a curve for dimensional reasons, and any curve
v : R — M will be isotropic. Likewise any hyper-surface will be coisotropic. To find explicit ones, we
could just take the curve C' given by the imbedding S' — T2 C M given by ¢t mod 1+ ¢(¢,0,0,0).

For a hypersurface H (thus a cosiotropic manifold), we can just take the hypersurface P = R3x 0 C R*
spanned by the coordinates x1, 22 and y;. The I' orbit O of this hyperplane P is a disjoint union of the
planes P 4+ 0 x 0 x 0 x Z. Thus ¢(O) = ¢q(P) is the quotient of a sub-manifold fixed by I' and is thus
a manifold itself. It is diffeomorphic to H quotiented by the subgroup Stab(H) fixing H, which is the
group of elements (4, k) with k& = (k;,0). This subgroup is actually isomorphic to Z? since(j, k)(j', k') =
G+, Apk+ k)= (j+j,k+ k) when ks = 0. Likewise the action is just the typical Z* action. So
H ~ T3,

Finally, we want a Lagrangian. We can get this by much the same process, taking the space L =
0 x R x 0 x R spanned by x;,y; and taking ¢(L). Clearly L is a Lagrangian in R?. The same type of
arguments as above show that ¢(L) = ¢(O) where O is the orbit of L and that ¢(L) is isomorphic to T2.

Exercise 3.29 If ) is a coisotropic submanifold in (M,w) show that the complimentary distribution
TQY C TQ is integrable. Since w vanishes on T'Q)“ the leaves corresponding to the foliation of @) are
isotropic. This generalizes the characteristic foliation on a hypersurface discussed in Section 1.2

Solution 3.29 We have to use the Frobenius theorem. The statement we need is that if X is a manifold
and F C T'X is a sub-bundle, then F is integrable if and only if it arises from a regular foliation F' or M,
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in the sense that £, = T'F, where F}, is the leaf of F' going through p. E is called integrable if it is closed
under the Lie bracket, i.e if X,Y are two sections of E C T'M then [X,Y] is also a section of E.

Now we apply this fundamental theorem to our situation. Suppose () is a coisotropic sub-manifold of
(M,w), of dimension 2n — k with k < n, and let p € () be any point. We can pick a neighborhood U of p
in M and k functions H; such that 0 is a regular value of each H; and such that U N (N;H; 1(0)) =UNQ
(i.e these are locally defining smooth functions).

We make several observations about the H;. First, observe that T'Q, = Nker(dH;), for any point
¢ € UNQ. This implies that the covectors (dH;), € T*M are independent at ¢. Indeed, if they weren’t, then
Niker(dH;), = Niz;ker(dH;), for some j, and thus dim(N;ker(dH;),) = dim(N;»;ker(dH;),) > 2n — k — 1,
contradicting the fact that dim(7'Q,) = 2n — k. Second, observe that for any ¢ € U N @ and any
v € T,Q we have w(Xp,,v) = dH;(v) = 0. Thus the Xp,|g are k non-vanishing, independent sections
of TQ¥ in U N Q. It follows that they are a basis of T, at every ¢ € U N Q). Thus any section X of
TQ” over U can be expressed as X = . a; Xy, for some coefficient functions a,. Finally, observe that
(X, Xu,| = Xeo(xp;.xm,) = 0, by Proposition 3.6 and the fact that w(Xu, Xp;) = dHi(Xy;) = 0.

With these comments we can prove our result. Let X,Y be two sections of T'Q)“. Consider any p € @),
a neighborhood U of p and a set of local defining functions H; as above. Then X = ) . a;Xp, and
Y =), b Xy, for some smooth a;,b; on U. Then we have:

(X, V] = aiXu, biXn,) = abi[Xu, Xu)) + a;Xu,(0;)Xu, — b; X, (a;) X,

ij ij
= D20 Xin ) b Xin 0, = 3 e o
J

Thus [X, Y] is still a section of TQ‘“ and T'Q)¥ is an integrable distribution.

Exercise 3.31 Let Q be a 2-dimensional compact symplectic submanifold of a symplectic 4-manifold
(M,w). Prove that a neighborhood of @) is determined up to symplectomorphism by the self-intersection
number @ - Q) and the integral fQ w

Solution 3.31 Suppose Q, Q' C M are two symplectic 2-folds in M. It suffices to show that [, QW= fQ, w
and Q-Q =0Q - Q. Let ¢ : Q — Q' be any diffeomorphism. Then:

b= [ wle)= | vlo= [ wo=()1Q)

Here [@] is the fundamental class of ). Thus ¢*(w|g) and w|g are cohomologous symplectic forms and
by Exercise 3.22 we know that there is a diffeomorphism ¢ : @) — @ such that ¢*¢*w|y = w|g. Thus
a:(Q,wlg) = (@, wl|g) with & = ¢ is a symplectomorphism.

Now observe that Q- Q = e(rQ) = ¢1(Q) and likewise for @)'. Indeed, if o is a generic section of ¥() then
we can use any diffeomorphism ¢ : vQ — N(Q) with ¢(0) = Q C N(Q) (where 0 is the zero-section) to
get a cohomologous submanifold @, = ¢(0(Q)) intersecting @ itself transversely. Here N(Q) is a tubular
neighborhood of (). Then the signed count of intersections @, N @ is clearly equal to the signed count of
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intersections 0 N0, i.e Q- Q = e(vQ).

Thus if we consider v@Q and a*v@Q)’, we see that ¢;(vQ) = ¢1(a*vQ’), so the two bundles are isomorphic.
Thus there is a bundle isomorphism « : vQ) — vQ' covering a. We can then apply Theorem 3.30. to see
that there is a symplectomorphism (N(Q),w) — (N(Q'),w).

Exercise 3.32 Suppose that the normal bundles Qg and v(Q); are trivial as symplectic (or equivalently,
complex) bundles, and fix a symplectic isomorphism from vQ to the trivial symplectic bundle Qo x R?*,
Then choosing an isomorphism @ in the preceding theorem is equivalent to choosing a symplectic framing
v, and so there may well be several non-isotopic choices.

Here is an explicit example to work out. For i = 0,1 let (M;,Q;) = (T? x C,T? x 0) with the usual
product form and let ¢ = id. Take the obvious identification ¥Qq = v@Q; = T? x C and define ® by:

(s, t,v) = (s,t,e*™)

where (s,t) € T? = R?/Z*. Show that ® is an isomorphism of the symplectic vector bundle v7T? and find
a formula for the symplectomorphism 1 : N(Qy) — N(Q1).

Solution 3.32 This question is suspiciously straight forward. We rewrite this map as a bundle map,
defining the map ¢ : Qo — @, of the base spaces in the coordinates given by these trivializations by
#(s,t) = (s,t) and the covering bundle map ¢ : vQy — vQ; as ¢,(v) = e2™v. Using the identification
C - R? z =2z +iy — (z,y) with the standard wy = dx A dy, we can identify T2 x C = T? x R?. In this

— e27rJt

trivialization, the map ® : vQy — vQ; is given by ¢,(v) v where:

g ( 0 —1 ) L it ( cos(27t) — sin(2mt) )

10 sin(27t)  cos(2wt)

This is evidently an isomorphism on the fibers 1,QQ9 — v4;)@Q1. To check that the map is symplectic,
we just need to check that (denoting by 7; the symplectic forms on vQ;) (¢*m), = (70),. But in our
trivialization this is equivalent to ¢;(dz A dy) = dx A dy. But note that the endomorphism J; : vQ; — vQ;
given in our trivializations by (.J;),v = Jv is a compatible complex structure with w;(-, J;) = (,) with (,)

2w Jt

the standard Euclidean inner product in these trivializations. Furthermore e obviously commutes with

J and is orthogonal with respect to (,) (they’re rotation matrices). Thus the maps are symplectic.
Using the formula:

Do.t 850 — (ot ( cos(2t) —sin(2n) ) ( z ))

sin(27wt)  cos(2mt) Yy

seems acceptable to me.

Note that this trivialization is not isotopic to the identity trivialization ¢q(s,t,z,y) = (s,t, z,y). If this
were so, then ¢ o ¢, ' would be isotopic to the identity. But isotopy classes of bundle isomorphisms that fix
the base are equivalent to homotopy classes of maps [T2, SO(2)], and the map ¢ o ¢, ' can’t be isotopic to
the identity, since it contains the map S* — SO(2) given by t — (¢ o @' )os = €™, which is a map to a
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non-null homotopic loop. If ¢ o ¢ were isotopic to 0, then this map S* — SO(2) would be contractible,
a contradiction.

Exercise 3.35 (i) Let ¢ : M — T*M be an embedding which is sufficiently close to the canonical
embedding of the zero section in the C'-topology. Prove that the image of g is the graph of a 1-form.
(ii) Let g : M — M x M be an embedding which is sufficiently close to the canonical embedding of the
diagonal in the C*-topology. Prove that the image of g is the graph of a diffeomorphism.

Solution 3.35 (i) Let z : M — T*M be the zero section embedding. We just need to show that if g is
C'-close to z then ¢ = mog: M — M is a diffeomorphism. Then letting o = g o ¢! we see that o is an
embedding (as a composition of an embedding and a diffeomorphism) and Too =7 ogo (mog)™! =id.
Thus such a o is a section with o(M) = g(M).

Assume that we have put a Riemannian metric g on M, thus inducing a metric (also g) on TM, T*M and
T(T*M) (the naturally induced metric on a T'X and T'X given a metric on X is easy to work out, but this
is not the point of this question so we won’t go into it here). Thus for two maps o, 7 : M — T*M and their
corresponding differentials do,dr : TM — T(T*M) we can define |0 — 7||co = maxyepdist,(o(p), 7(p))
and ||do — drl||co = max(y y)esmdisty(do,(v), dm,(v)) (here SM is the sphere bundle of T'M under g), and
thus |0 — 7||c1 = || — 7]|co + ||do — dT||co.

Now consider the two maps ¢ = mo g and © = id = m o 2. We will start by showing that there is an
€1 > 0 such that ||g — z||c1 < € implies that d¢ : TM — TM is rank n (i.e it’s a local diffeomorphism).

Start by observing that the image di(SM) = SM. This is a compact sub-manifold of 7'M which is
disjoint from the zero section Zy C T'M. So the number d(SM, My) = min,epy, qesm d(p, q) is non-zero
(it’s 1 actually, assuming that we define the metric on TM in a reasonable way). Now, there exists a
constant C such that ||d(wg) — d(7z)||co < Cillg — z||cr (this is evident since 7 : TM — M is C*
bounded and d(mg) = dm o dg). Now suppose that ||g — z||c1 < € = d(SM, M,)/C; and, for the sake of
contradiction, that dg,(v) = 0 for some (p,v) € SM. Then we see that d(dg,(v), di,(v)) = d((p,0), (p,v)) >
d(SM, My) = Cy€;. This contradicts the assumption that ||d(7g) — d(72)||co < Ci||lg — 2z||cr = Cie1. Thus
dgp, is non-degenerate (rank n) for each p in this case.

Now assume M is connected (the not connected case is just more notationally complicated but it isn’t
harder). The above argument shows that assuming ||g — z||c1 < €; implies that ¢ : M — M is a covering
map (we can show surjectivity using a continuity argument on M if it’s connected). The fiber must be
finite since M is compact. But the size of the fiber [¢~*(p)| is locally constant near points p where dg(p) is
non-degenerate, and thus it is constant on M.Then the size of the fiber of g is some integer n > 1. We see
that the fiber can be expressed as F(¢) = |, 2 @1 where p1 is some fixed volume form with / oy i=1. But
the map F : C°°(M, M) — R given by this integral is certainly continuous in the C'* topology, so for small
€2 we must have ||¢ — il < C1]lg — z||cn < Ciey implies F(¢) = 1 and thus that ¢ is a diffeomorphism.

Thus picking € = min(e;, €2) we see that ||g — z||c1 < € implies that g is the graph of a section.

(ii) This admits a similar treatment to (i). Let § : M — M x M denote the diagonal imbedding, and let
m, T » M X M — M denote the two projection maps to the different factors. We want to show that if g is
C'-close enough to d, then it is the graph of some diffecomorphism. It suffices to show that if g is close to §
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then the maps m g, m2g : M — M are both diffeomorphisms. Then g(M) is the graph of ¢ = (m2g)(m1g)~!
since {(mg(z),mg(z)) € M x M|z € M} = {(z, (m29)(m19) "' (z)) € M x M|z € M}. The same argument
almost verbatim as with 7g in (i) should work to show that m ¢ is a diffeomorphism for ¢ close to § (and

likewise for mag, since the problem is symmetric with respect to swapping the first and second coordinate
of M x M).

Exercise 3.36 (Hypersurfaces) Let wy and w; be symplectic forms on M which agree on a compact
oriented hypersurface S. Show that the inclusion ¢ : S — M extends to an embedding ¢ of a neighborhood
of U of S into M such that ¢*w; = wy. Note that we only assume equality of the forms i*wy and *w; on
S and not TgM. Deduce that a neighborhood of S is symplectomorphic to the product S x (—e¢, €) with
the symplectic form:

w = 1"wy + d(ta)

Here « is any 1-form on S which does not vanish in the characteristic directions 7'S“ of S and ¢ is the
coordinate on (—e,¢).

Solution 3.36 Let vS be the normal bundle to i(.S) and let T'S“ be the canonical line bundle given by
the symplectic perp to T'S, at each point p.

vS is trivial if S is orientable. This is true because, if we choose a metric g on M, we have the
isomorphism A""'S — 1S given by a — g% x a. That is, we take an element o € A"7'S, C (A""*M|s),,
apply the Hodge star * in M to map it into (A*(M)|s), and then apply the musical isomorphism to lift
it to an element of TM|g. The result will be perpendicular to T'Q) in T'M, so it will be an element of the
normal bundle via the identification vM ~ T'S+ C TM. S is orientable if and only if its top form bundle
A"71S is trivial, so this bundle isomorphism shows that vQ is trivial.

Let p € S and consider v(p) € vS C (T'M|s), (here we fixing a background metric so that vM, ~
(T'Sp)*+) and some arbitrary non-zero vector £(p) € T'Sy. First observe that w;(£(p), v(p)) # 0 for i =0, 1.
If this were that case, then w;(£(p),ei(p)) = 0 for a basis e;(p) of T'S, and thus w(£(p),v) = 0 for all
v € span(v(p), e;(p)) = T'M,. This contradicts non-degeneracy of w.

Now we show that w; = (1 — t)wg + tw; are non-degenerate in a neighborhood of S for all ¢. Assume
that wo(£(p), v(p)) and wq(&(p), v(p)) are the same sign (we will deal with this at the end of the problem).
Then if £(p), e1(p), . . ., €2,—2(p) are a basis of T,,S then w(e;(p), -) is non-zero for all 7 since there is a vector
v € TS such that w;(e;(p),v(p)) = wole;(p),v(p)) # 0 since wy = wy on T'S and e;(p) ¢ TS = TS*0.
Likewise w(v(p), -) is non-zero on &(p) since it is the convex combination of non-zero numbers of the same
sign and likewise w:(£(p), -) is non-zero on v(p). Thus the map v(p) — wi(v(p),-) from TM — T*M is
non-degenerate. Since closedness is linear, this implies that w; is a family of symplectic forms.

Now we demonstrate that w; — wy = %wt is exact. Then it follows from Moser’s argument (or just

Lemma 3.14) we have a map ¢ : Ny(S) — Ni(S) between two tubular neighorhoods of S such that
Y*w; = wp and ¥|g = id. This yields the desired result.

To see this, consider the long exact de Rham cohomology sequence for the pair (IV,.S) where N is any
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tubular neighborhood of S.

o — H'(N)— H'(S) = H*(N,S) — H*(N) — H*(S) — ...

Consider w; — wy. This form gives a well-defined class [w; — wg] € H?(N, S) since the pair (w; — wp, 0)
is closed in the cochain complex Q*(N) & Q*~!(S) defining the relative cohomology of N and S, i.e
d(w1 —wo, 0) = (d(w1 —wp), (w1 —wp)|s) = (0,0). But this relative cohomology is 0 because N retracts to S,
s0 (w1 —wp,0) = (0, k) + (do, a|s —dB) (that is, it’s equal to an element in the image of H'(S) — H?*(N, S),
which is (up to an exact cocycle (do, als — dB) in Q*(N) @ Q'(S)) something of the form (0, x)). But this
says that w; — wp is exact in N.

Now we cope with this sign issue. First observe that the relative sign wo(v(p),&(p))/wi(v(p),£(p)) is
constant for all p € S (assuming that S is connected). To show this we use a continuity argument: fix a
po and define T' by:

_ siom wo(v(q).€(q)) wo(v(p),&(p))
T'={a & Shsien(C o) o (0(0). )

Note that this is independent of our choice of non-zero £(p) and £(q). Obviously p € T, so T' is non-empty.

It is also open: if ¢ € T', then by picking a non-zero section ¢ of T'S¥ in a connected neighborhood U of

p we see that % will be a continuously varying non-zero function over U and thus will not change

) = sign( )VE(p) € TS, —0,¢(q) € T'S; — 0}

sign. A simple argument with converging sequences of points p; and vectors £(p;) also shows that the set
is closed. So T'=S.

Thus either the sign wo(v(p),&(p))/wi(v(p),&(p)) is negative everywhere or positive everywhere. We
already dealt with the positive case. In the other case, we can use an automorphism j : N — N of a
tubular neighborhood of S given in coordinates S x (—¢,¢€) (induced by the trivialization of vS by v) as
Jj(p,s) = (p,—s). This diffeomorphism restricts to the identity on S. Now if we consider j*wy, it satisfies
Jrwi(v(p),&(p)) = —wi(v(p),&(p)). Thus % is positive. Thus applying the first case to j*w; we
find a ¢ : No(S) — N1(S) with N;(S) C N such that ¢(S) = S and (¢j)*w; = wy. Thus we still have our

result, replacing ¢ with ¢j.

In the case when S is not connected, we can treat each piece separately. Deducing the last part is trivial:
the symplectic manifold S x (—¢, €) with form w’ = i*wy + d(t) has the map i : S x 0 — S C M which by
constructioj satisfies i*w|;(s) = *w = w'|gx0. So there are neighborhoods of S in M and S x (—¢,¢) that
are isomorphic.

Exercise 3.37 State and prove analogues of Theorem 3.30 and Theorem 3.33 for isotropic and coisotropic
submanifolds.

Solution 3.37 The analogue is this:

3.30/3.33 Analogue: For j = 0,1 let (M;,w;) be a symplectic manifold with compact submanifold
Q;. Suppose that there is a bundle map ® : TQf — T'QY such that ®*w;|rqe = wo|rge Which covers a map
¢+ Qo — @1 such that ¢*wi|rg, = wo|rg,- Then ¢ extends to a symplectomorphism ¢ : (N(Qo),wo) —
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(N(Q1),w1) of neighborhoods of Qy and Q.
Proof:

Exercise 3.38 Show that any point ¢ of a symplectic 2k-dimensional sub-manifold () of M has a Darboux
chart such that @ is given by the equation z; = 0 for ¢ > 2k. State and prove similar theorems in
Lagrangian, isotropic and coisotropic cases.

Solution 3.38 This is essentially an application of Theorem 3.30, Theorem 3.33 and Exercise 3.37 (along
with Exercise 3.40 which states that these results are valid for non-compact submanifolds).

First suppose @) C M is symplectic. Take a p € M and a contractible neighborhood U C M of p and
consider (Q N U. This is a symplectic manifold of dimension 2k, so by possibly shrinking U we can find a
V C R? and a symplectomorphism ¢ : V — Q NU with ¢(0) = p. Now consider the pullback ¢*v(Q NU)
(where the normal bundle is taken by considering Q@ NU as a non-compact sub-manifold of U). ¢*v(QNU)
is a bundle over a contractible space V' (diffeomorphic to the disk) so it admits a trivialization, equivalently
a bundle map 1 : vV =V x R?" 2k — ¢*1(QNU). This is the same as a a bundle map ¢ : vV — v(QNU)
covering the symplectomorphism ¢ : V' — @ NU. Thus the hypotheses of Theorem 3.30 are satisfied, with
Qo =V, (My,wy) = (W,wg) where W C R?" is a contractible open subset of R?" with W NR?* = V|
Q1 = Q and (M1, w;) = (U,w). We have neighborhoods N; with 0 € V' C Ny in W C R?", a neighborhood
N, with p € QU C U, and a symplectomorphism 1 : Ny — N; sending R* N to V. But these are

precisely Darboux coordinates about p where Q NNy ~ V N Ny = R* N Ny = {(z;) € No|z; = 0,i > 2k}.

Now suppose that () C M is Lagrangian. Take a p € M and a contractible neighborhood U of p such
that UNQ is also contractible. Then UN() is a contractible Lagrangian in the open symplectic manifold U,
and is diffeomorphic via some ¢ to an open V C R™ C R?" where R" C R*" ~ C" is the usual Lagrangian
(the real sub-space). We can assume that ¢(0) = p. Let W C R*" be a simply connected open subset such
that W N'V. Then by Theorem 3.33, the diffeomorphism ¢ : V' — U is covered by a symplectomorphism
¥+ Ny — N; of neighborhoods of Ny of V' to a neighorhood N; of @ N U. This is precisely a Darboux
chart where ¥(0) =p and "1 (QNU) =V =W NR* = {(z;) € W|z; = 0,7 > n}.

Exercise 3.39 Prove Lemma 3.14 and hence Theorems 3.30 and 3.33 for non-compact sub-manifolds ().

Solution 3.39 We will prove the following Lemma. The proof will largely be a rehashing of the proof of
Lemma 3.14, with a few modifications which we will point out.

Lemma 3.14 Analogue: Let M be a 2n-dimensional smooth manifold, and () C M be a closed
sub-manifold whose topology is the induced topology?. Suppose that wg,w; € Q%(M) are closed 2-forms
such that at each ¢ € ) the forms wy and w; are equal and non-degenerate on 7, M. Then there exists open
neighborhoods Ny and N; of ) and a diffeomorphism ¢ : Ny — N; such that ¢|g = id and ¢*w; = wy.

Proof: First we show that there exists a neighborhood N of @ and exact 1-form o € Q'(N) such that

480 every p € Q has a neighborhood U in M and coordinates ¢ : V — U such that Q N U = ¢({(z;)|x1 = ...x, = 0} for
some k. Lang takes this as the definition of a sub-manifold, but it’s not always considered a necessary condition.

46



o|lrom = 0 and do = wy — wp. As in Lemma 3.14, we prove this by considering the exponential map exp :
TQ+ — M from the normal bundle to @ with respect to any metric on M. By the tubular neighborhood
theorem for closed sub-manifolds (see for instance Lang, Fundamentals of Differential Geometry, Theorem
5.1) there exists a smooth function ¢ :  — R such that the open neighborhood U(e) = {(p,v) €
TQ | g(v,v) < e(p)} maps diffeomorphically to N = exp(U(e)) € M. Now define ¢y : N — N for
0<t<1 by:

¢u(exp(p,v)) = exp(p; tv)

¢ is a diffeomorphism for ¢ > 0, ¢o(N) = @, ¢ = id and ¢;|g = id. Thus letting 7 = w; — wp, we have
oo = 0 and ¢j7 = 7. Now define the vector field X; by:

d
X = (%@) o,

for ¢ > 0. Then: 4
%(?IT = ¢:£Xt7— - d(gb:ZXtT) = dgt

where we now define o, = ¢;ix,7. In particular, we have:

ld 1
rzas*;r—gbzzfz/ L rr — do 0—/atdt
0 dt 0

Furthermore, i,04(q) =i 9 0( o) oo (9:(q)), so oy itself is smooth at 0 even though X is not. Furthermore
this formula makes it clear that it vanishes for ¢ € @ since then ¢,(¢) = ¢ and 7(¢:(q)) = 7(q) = 0.

Thus we have our 0. Now we execute Moser’s argument. Consider the family of 2-forms w; = wy +
t(wy —wp) = wo +tdo. Since wi|g = wylg, for every point ¢ € @ there exists a neighborhood U(q) such that
w; is non-degenerate for all ¢ at any r € U(q). Taking the union of these neighborhoods and intersecting
the result with N, we may shrink N so that w; is non-degenerate in N for all N for all t. Then we can
solve the equation o; + it x,w; = 0 for a vector field X; on N.

Now we just need to know that we can solve the equatlon (Ut = Xy oy, = id for 0 < ¢ < 1. Then
0= ;lt *wy = Yy (dtwt + dix,w:) = 0 so in particular ¢¥jw; = wy. To know this, we must shrink N even
further. Since X is C* (thus locally Lipchitz) and X;(q) = 0 for every q € Q, we know that for every ¢ there
exists a constant C'(q) such that in a sufficiently small ball B(q, €(q)) about ¢ we have |X(p)| < d(p, ¢) for
all p € B(q,€(q)). Furthermore we know that any flow line p(t) of X; can be continued while p(¢) remains
in the ball: that is, if p : [0,s] — B(q,€(q)) is some partially defined flow line with p(s) € B(q,€(q)) then
by the local existence theory of first order ODE (Picard-Lindelof) and the fact that X; is C* in ¢t and p,
we can extend p(s) to a flow line p : [0, s + J] for some small § > 0.

Now suppose that p : [0,s) — B(g
#len(p(t)) = [Xu(p(t)] < Clg)d(p(t),
implies f(t) < f(0)e“?", ie d(p(t),q)
n(q) = Le(q)e D, p(t) will stay in B(e(q

Thus if we let No = NN (UyeB(¢,1(q))), then the flow along X; is well-defined to time 1. Thus setting
¢ = ¢1 and Ny = ¢1(Np), the resulting map ¢ : Ny — N; is the map that we desire.

q,€(g)) is some flow-line. Then observe that Z(d(p(t),q)) <
q). Thus letting f(¢t) = d(p(t),q) we have % < C(q)f, which
< d(p(0),q)e€@!. Thus if we pick p(0) € B(q,n(q)) where

),q) until ¢ = 1.
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Exercise 3.40 Let ¢, : Q — M be an isotopy of a symplectic, Lagrangian, isotropic or coisotropic
submanifolds @ of M. Show that ¢, extends symplectically over a neighborhood of Q).

Solution 3.40 First assume that () is isotropic, Lagrangian, or symplectic. In the symplectic case, by
Moser stability, we can assume that the map satisfies ¥;w; = 7 for some fixed symplectic form 7 on Q: if
not, then ¢;w; is a family of cohomologous symplectic forms on (), thus there exists a family v, : () = Q
so that v/Y;w = ¢Yjw = 7. In the other cases we can also assume this, because the restriction of w is 0.

Now choose a neighborhood N that retracts onto @, so that H*(N,Q;R) = 0. Take any extension of
Yy to an isotopy pr : N — M of a neighborhood of () into M, and consider pjw;. Then 7, = pjw — pjw is a

family of closed forms on N which vanish on ). Now we examine the long exact sequence of cohomology
for the pair (N, Q):

- — H'(N) = HY(Q) — H*(N,Q) — H*(N) — H*(Q) — ...

Since 7; vanishes on the Q, (7, 0) is a representative of an element in H*(N, Q). However, H*(N, Q) = 0,
so (14,0) = (day, at|lg — dft) + (0, ke|g) for some smooth families of 1-forms a; on N, 0-forms 8 on @) and
closed 1-forms x on N. This just comes from unravelling the definition of cocycles for relative de Rham
cohomology®. But this precisely says that 7, = doy, where at|g = dfi+ Ki|g. We can extend f3; to a smooth
function on all of U and then redefine oy = oy — Ky + df; to get an «; which vanishes on the boundary
and has doy = 7. Thus we may apply the Moser trick (solving ay + ix,w; = 0 for X; and then integrating
X;) to construct a family of diffeomorphisms ¢; which fix @ C U and have the property that pjw = ¢} pfw
and ¢¢l¢o = id. Thus ¢ip; : U — M is a family of symplectomorphisms (U, pfw) — (M,w) such that

¢tpt’Q = 1.

Exercise 3.50 Let H = H(xy,...,Zn,Y1,---,Yn, 2) be a smooth function on R?*"!. Prove that the
contact vector field generated by H with respet to the standard form oo = dz — > ; Yjdz; is given by the
differential equation:

. OH ) OH Z
VRl 8yj7 y] 033] y] 02’ y] Jj
Solution 3.50 The contact vector field Xy is characterized uniquely by ix,o = —H and ix,da =
dH — (irdH )a where R is the Reeb vector field and « is the contact form. Consider the vector field:
OH OH
X =—20,. — — 0,
oy; * 8x] y] 8z Zy] y;

Then we calculate that:
o= - =

5See for instance Bott & Tu, Differential Forms In Algebraic Topology
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OH 0OH OH OH oOH 0H OH OH
4dxj+yj§dxj_0_xjdxj__dy Vi, dxj)— o —dz+—dz=0

ixda—dH+(igrdH)« :( o, —dy;+ oz, o, o

Thus X = Xpg. This prove that the flow lines solving %7 = X, are given by the ODE written. In
particular, if H is time independent then the first two equations are the Hamiltonian flow equations for
(z,y) in R?" and the last equation says that:

()= 2(0) = [ it = [ ST yya— Hat = Al p)loa)

Here A is the symplectic action, as introduced in Ch. 1.

Exercise 3.51 Prove that the solutions of (3.11) are characteristics of the Hamilton-Jacobi equation:
0S + H(z,0,5,5) =0

for a function S = S(t,z) on R"". More precisely, if S is a solution of (3.12) (the above equation) and
x(t) is a solution of the ordinary differential equation & = 9,H (z, 0,5, S), prove that:

w(t), y(t) = 0.5t x(t), 2(t) =St x(t))

satisfy (3.11) (the contact ODE). Conversely, given an initial function S(0,z) = Sp(x) use the solutions of
the contact differential equation (3.11) with initial conditions of the form z(0) = zo, y(0) = 0,5(x0), 2(0) =
So(zg), to construct a solution to the Hamilton-Jacobi equation (3.12) for small . Moreover, prove that a
function S = S(t, x) satisfies (3.12) if and only if the corresponding Legendrian submanifolds:

Ly ={(z,0,5(t,x),S(t,z))|x € R"}

are related by L; = 1;(Lg), where 1, : R*"*1 — R?"*1 i the flow of the differential equation (3.11).

Solution 3.51 Suppose that &; = 9, H(x,0,S,S) and we define y(t) = 0,S(t, z(t)) and 2(t) = S(t, z(t)).
We want to show that these satisfy the contact Hamilton equations. The equation & = 9, H is the set of
equations for z. For z we have:

i %(S(t,x(t))) )+ Z (0,,8)i; = —H(x,y,2) + Zijj

Here we just use chain rule, the differential equation for S and the definition of y. Likewise, we have:

d

Ui = 7 00, 5(,0)) = (00, S) (6, 2) + 3 (00,02, 9) (2, 2)(1)

— —(0,,(H(x,0,5,5)) + Z(axiaij)(t, )ii(t)
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— (0, H)(1,0,5,5) — Z(GyiH)(x, 085, 5)04,0.,8 — 0.HO,,S + Z(@xic‘?ij)(t, x)x;(t)
- —(@%H)(ZE, Y, Z) - azHy]
This is the last equation, for .

To use solutions of the contact Hamilton equations to build a solution of the Hamilton-Jacobi equations,
we essentially use these formulae backwards. For an initial function Sp(x), consider the solutions to
x(w,t),y(w,t), z(w,t) to the contact Hamilton equations for initial conditions z(w,0) = w, y(w,0) =
0:S0(w) and z(w,0) = Sp(w).

Now consider the family of smooth maps ¢, : R — R" given by ¢;(w) = x(w,t). We have ¢y = id, so
for each p € R™ there exists a neighborhood about p, U C R™ x R*, such that for all (¢,t) € U we have
doy(q) is full rank. In particular, for a fixed point wy € R™ we have a neighborhood U x [0,t) of wy with
this property. Thus, in this neighborhood, we may define S(x,t) = z(¢; *(z),t), and if we pick U x [0,t)
small enough then this map is well-defined since there ¢, : U x [0,¢) will be a diffeomorphism onto its
image. In order to extend this definition to all of R" we would need to make assumptions about H to
make this ODE well-defined for a fixed time interval over all R".

Now before we move further, we want to observe that 9,S(t, (1)) = yz(0)(t).

With the above results, checking that S(z,t) this satisfies the Hamilton-Jacobi equations in its domain
of definition is simple. We just observe that:

500, = A6 ). 0) = (67,0 + 30261 () 1) 0

—Zyz ¢ (@), )0y H (w,y(¢7 " (2),0),8) = H(w,y(¢7 (2),0),8) = D (0,2) (67 (), 1) (dy, )dej()
dt

7

= 0,,8(x, )0, H(w,0,5(x, 1), 1)
H(zx,0,5(x,t),t Za S(x,t)0,,H (x,0,5(x,1),1)

= —H(z,0,5(,1),t)

Exercise 3.52 Prove that the contact vector fields form a Lie algebra with [Xp, Xq| = Xpey for
F,G: M — R. Deduce that the map (F,G) — R determines a Lie algebra structure on C'*(M).

Solution 3.52 Let X,Y be contact vector fields with contact Hamiltonians F,G. Consider the vector
field [X,Y] and the function {F,G} = —a([X,Y]). We verify the formulae in Lemma 3.49 (i) for [X,Y]
and {F, G}, namely that:

izoo = —H; igda =dH — (ipdH)«
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for Z =[X,Y] and H = {F,G}. Observe that this is equivalent to the condition:
iz&: —H; £ZOé:Z'[Z’R}Oé

Thus we need to prove that condition for Z = [X,Y] and H = {F, G}, assuming it holds for the pairs
X, F and Y, G. The first condition is trivial. For the second one we have:

,C[X,y]@ =LxLya—LyXa=Lx (Oéi[va}Oz) — ﬁy(ai[x,R]Oz)

= i[yvg}ﬁxoz)oz —+ Ozi[x7[y7R]]Oé =+ EXai[ny]Oz — Ozi[Xﬂ]EyOé —+ Oéi[)g[y,R]] — ﬁyOéi{XVR}Oz
= 2i[x,R) [y, R — 2U[x, R VU[y,R)Q T QU[X,[Y,R]+[Y,[R,X]]Q = QU_[R,[X,Y]] = QX Y] R

This confirms the two identities, and the second equation implies also that [X, Y] is contact. This implies
that the bracket {-, -} obeys a Bianch identity. Since it is anti-symmetric and bilinear by construction, it
is by definition a Lie bracket. It imbues the vector-space of C'*° functions with a Lie algebra structure.

Exercise 3.54 Not every contact vector field is the Reeb field of some contact form. Show that X is
the Reeb field of some contact form which defines £ if and only if X is transverse to &, i.e ica # 0 for any
defining form «.

Solution 3.54 If R is the Reeb vector-field of a contact form « defining £ as £ = kera, then for any
other defining o = fa with f > 0 we have ird/ = fira = f, so X is transverse to £. Also Lra=0s0 R
is evidently contact.

Conversely, suppose that X is a contact vector-field transverse to . Let a be any defining form for &.

Then i x« is never zero by assumption, so if take the contact Hamiltonian H = —ix« then the new contact
form = is well-defined and smooth. Furthermore, we have:
_ — . Hda—dH N « Hixdo — aixdH + dHixo
Zxd(—):—lx( 2 ):_ 9
H H H

= —Hﬁz(Hideé — HdH -+ &EX(ion)) = —H72(Hixd@ — HdH -+ Oéixﬁxoé)
= —H *(Hixdo — HIH — cixaigdH) = —H *(Hixdo — HdH + HaigdH) = 0

This is essentially a repeated application of the 2nd defining equation for the contact Hamiltonian defined
for X in Lemma 3.49.

Exercise 3.59 Let (M,€&) be a contact manifold with contact form « and corresponding Reeb field R.
If § is any 1-form such that S(R) = 0 prove that there is a unique vector field X which is tangent to kera
and such that § = ixda.

Solution 3.59 We know by the contact condition that o A (da)™ is a volume form, thus that da is a
non-degenerate symplectic form on kera. Thus the map ¢ : £ — £ given by v — i,dal¢ is a bundle
isomorphism. Now consider the sub-bundle n C T*M with fiber 7, = ker(R) where R is identified as an
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element of (7T*M,)*. Then we have a bundle map ¢ : n — & given by e — ¥ '(i(e)|¢). Here i :n — T*M
is the inclusion and the map 7*M — £* given by e — e|¢ is restriction.

We prove that ¢ is a bundle isomorphism, first arguing that it is surjective on the fibers. To see this,
we observe that the restriction map T x M — £* is certainly surjective (because & — T'M is injective).
So for any ¢ € £* there is a b so that bl = ¢. Then a = b — ab(R) is an element of n such that
ale = ble — b(R)ale = ble = ¢. So any ¢ € & is in the image of e — i(e)|e. Then since ¢! is an
isomorphism, we know that e — ¥ ~!(i(e)|¢) is a composition of surjective maps on the fibers, and thus is
surjective.

To prove that ¢ is injective is suffices to show that e — i(e)|¢ is injective. So suppose that i(e)|s = 0
for e € n,. Then e(v) = 0 for any v € £ and e(R) = 0 since e € n. Thus e is zero on a basis of T,,M, thus
it is identically 0. So ¢ is injective. Thus the map n — £ is a bundle isomorphism. It follows that any
section 3 of n maps to a unique section X in & such that 8 = ¢~ 1(X) = i;x)dov.

Exercise 3.55 (Darboux’s theorem) Prove that every contact structure is locally diffeomorphic to the
standard structure on R*"+1,

Solution 3.55 First observe that, for any vector-space V' of dimension 2n + 1, non-zero covector «
on V' and symplectic form 8 on ker(«) there is a linear map ¥ : V' — V such that U*a = aglo = dz
and U*f = wy = Y, dz; A dy;. This fact is easy to see: simply do a change of coordinates to a basis
€2y €ays €yys - - -5 €y €y, Where e, and e, span ker(o) and then apply the symplectic Graham-Schmidt
procedure to e,, and e,, to get a symplectic basis of ker(c).

Now consider a contact manifold (Y, «), a point p € Y and a neighborhood U of p. Pick coordinates
¢ U — R with ¢(p) = 0. By the above discussion we can choose this map so that ¢*ag = a and
¢*day = da at p. Now consider the family of 1-forms oy = t¢*ap + (1 — t)a. At p we have oy = « and
day = do. Thus oy Ada} = aAda™ is a volume form at p for ¢ € [0, 1]. Since oy and day are smooth, and 1
is compact we can (after potentially shrinking U) assume that oy Ada} is a volume form on U for ¢ € [0, 1].
Then it follows from the contact Moser argument on p. 112 that (after again possibly shrinking U) there
exists a family of diffeomorphisms ¢, : U — M and a family non-vanishing of smooth functions ¢, : M — R
such that ¥fa; = gy for all t. In particular, (1,¢)*ag = gi, and thus the map 16 : U — ¢1¢(U) C R*"
is a contactomorphism of a neighborhood of p € M to a neighborhood of R?"*! with the standard contact
form.

Exercise 3.55 (Gray’s Stability Theorem) Prove that every family a; of contact forms on a closed
manifold M has the form ¢} (f;ap) for some nonvanishing functions f;.

Solution 3.55 It’s equivalent to prove that ay = fih;a; since then o = (’l/f?)_1<%ag). This is just
Moser’s argument repeated. Given a compact manifold M with a family of contact forms a; with
corresponding Reeb vector field R;, we consider the family of smooth functions h; = iRt%at. Then
%at — hyoy is a family of 1-forms with ig,0p = (iRt%at)(l —ig,a¢) = 0. Thus there exists a unique
family of vector-fields X; tangent to & = ker(cy) such that ix,doay = o, = %at — hyay. In particular, we

O =
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have:

— O + ;CXtO[t = — O + iXtdOét + d(ZXtOét) = htOét

dt dt
since ix,op = 0. Now since M is compact and X; is smooth, we can solve for the flow of X; for ¢ € [0, 1]:

d .
a@bt =X; 0y, Yp=id

Furthermore we can can set f; to be:
t
Je= exp(/ hi 0 ydt)
0

Then we have:

d d d d
%(ftlﬁf@t) = fﬂﬁ(%at + £XtCYt) - Eftat = fﬂﬁ(%at + ['Xtat) — fihi o wt¢:at

d
= ftQ/}:(EOét -+ EXtOCt — htOét) =0
Thus fiy;oy = a.

Exercise 3.57 (i) Prove that L C @ is a Legendrian sub-manifold if and only if L x R is a Lagrangian
sub-manifold of @ x R. (ii) Prove that ¢ : Q — @ is a contactomorphism with ¢*a = e« if and only if the
map (¢, 0) = (1(q), 0 — h(q)) is a symplectomorphism of Q x R. (iii) Prove that if X = Xz : Q — TQ
is the contact vector-field generated by H : Q@ — R then the Hamiltonian vector-field H(q,8) = ¢’ H(q)
on @ x R generates the Hamiltonian vector field X (q,60) = (X(¢),dH(Y)). (iv) Prove that the Poisson
bracket of F' = e’ F and G = €’G is given by {F,G} = ’{F,G}.

Solution 3.57 (i) Pick a sub-manifold L C Q. Pick any (p,0) € L x R, eg,e1,...,¢e; form a basis of
T,(L x R), where ey is the basis vector in the # direction and e; is a basis of TL. Then L is Legendrian
if and only if L is n-dimensional, with 7L C ¢ and da|;, = 0. In the basis the last two conditions are
equivalent to:

w(e;, ej) = e (da —a ndf) = edale, e;) =0;  wlep, e;) = ale;) =0

The above equations hold if and only if L x R is n + 1-dimensional and w|,«g = 0, i.e if and only if
L xR C @ x R is Lagrangian.

(ii) We see that:
Vra =e'a <= Y*a = e"a and Y*da = e"(dh A o + da)

= Yr'w =1 (da — aAdb)) = (W da — pTa A d(O — h))
=" "(e"(dh N a + da) — e"a A (d — dh) = € (da — o A dB)

The forward part of the last if and only if is part of the manipulation. The backward part comes from the

fact that e (da — a A df) = e*"(y*da — *a A d(0 — h)) implies that (e’ "*a — e’a) A df = 0. Since a

0

only has components in the @ directions, this implies that e?~")*a — e = 0 identically, which implies
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that 1 is a contactomorphism.
(iii) We observe that if H = e’H is our Hamiltonian, then dH = ¢’Hdf + e’dH and defining X =
(X,irdH) where R is the Reeb vector field, we have:
igw =€ (ixdo —ixadd + igdHo) = ¢ (HdO + dH) = dH

Here we use the defining equations of X, namely ixa = —H and ixda = dH — igdHa.

(iv) We compute:
iXﬁiXéw = GeiXFiXé(d(X —a d@) = iXF (iXGd(I - iXG(IdQ + OéZRdG)

= iXFiXGda - iXG(IiRdF + ’L.XFOéZ'RdG = Z'XFZ'XGdOz + iXGd(iXFOZ) + /I:XG?:XFda - iXFd(iXGa) - iXFiXGda

= iXGiXFdOé + Xg(iXF(I) — XF(iXGOé> = _Z’[vaXc}a = {F7 G}

Exercise 3.59 (i) Show that if a compact hypersurface ) has contact type, different choices of forms
a such that da = w|g give rise to isotopic contact structures on (). (ii) A compact hypersurface @) in a
symplectic manifold (M, w) is said to be of restricted contact type if it is transverse to a Liouville vector
field X defined on all of M. Show that every simply connected hypersurface of contact type in fact has
restricted contact type provided only that w is exact. (iii) Consider a compact Lagrangian submanifold L
of Euclidean space (R?", —d)\o). By Theorem 3.33, a neighborhood N of the zero section in T*L embeds
symplectically into R*". For small r, the sphere bundle S, (T*L) of radius r is contained in N and so also
embeds into R?". Show that these hypersurfaces have contact type.

Solution 3.59 (i) In order to be isotopic, it’s clear that ag and oy must induce the same orientation on
@ via their volume form, since isotopic volume forms induce the same orientation. Thus we may assume
this. Consider two contact forms oy and aq, both of which satisfy da; = w|g. Then consider the family of
1-forms oy = (1 — t)ap + ta;. Then we have:

doy = (1 —t)w|g + tw|g = wg = day = day
Thus we have:
ar Aday = (1 —t)ag ANday +tag Aday = (1 —t)ag A daf + tag A day

As a convex combination of two volume forms inducing the same orientation, the latter expression is
non-zero for all . Thus «; is contact for all ¢ and thus it is an isotopy of contact structures.

(ii) Suppose that w is exact. Then w = da for some 1-form a. Furthermore, let X, be the unique
vector-field on M satisfying iy, da = a. Such a vector-field exists and is unique by the non-degeneracy of
w = da. Then we have Lx_ w = dix, da = da = w. Now we want to show that we can pick a so that X,
is transverse to ).

For this, we observe the following. Since () is of contact type, ) has a Liouville vector field X3 in a
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neighborhood U which is transverse to ) at every point. Let 8 be the corresponding 1-form 8 = ix,w.
Then 3 — « is a closed 1-form on U. Since Q is simply connected, H(Q;R) = HY(U;R) = 0, so 8 —a = df
for some function f. Now let g be a function on M which is compactly supported in U, and which agrees
with f in a smaller neighborhood of ). Furthermore let kK = o + dg. Then & has dk|g = da|g = w|g and
has k = [ in a neighborhood of (), implying that the Liouville X, = Xz in a neighborhood of @), and thus
that it is transverse to ). So X, is the globally defined Liouville that we want.

(iii) This is equivalent to the fact that the sphere bundles themselves Q = S,.(T*L) C T*L are of
contact-type in T*L. To see this, let ¢ : N — M be the symplectomorphism of the neighborhood of
0 C T*L to M, and suppose X is a Liouville for Q C N (which we can assume is defined over all of N
after possibly shrinking V). Then at any point ¥ (p) € ¥(N) we have:

Etp*X(—d)\O) = ﬁw*X((Qﬁil)*(wcan)) = <w71)*£XWcan = (wil)*wcan = _d)\()

Thus the neighborhood ¥(N) is a neighborhood of ¢(Q) with the Liouville ¢, X, and ¢(Q) is of contact
type. Now observe that Q = S,(T*L) has the Liouville vector-field X, = — ). &0, (here the §; are
cotangent fiber coordinates in T*L). Then we have:

Z.chan - ZX(Z dxz A dfz) - Z gzdé-z = Ocan

Exercise 3.60 Show that if @) is a compact hypersurface of contact type in (M,w) it has a preferred
positive side into which any transverse Liouville vector-field points. In particular, there is no orientation
reversing map ¢ : () — ) which preserves the restriction w|g.

Solution 3.60 Consider two Liouville vector-fields X, X; inducing contact forms o; = ix,w. We noted
in Exercise 3.59 that the isotopy a; = (1 — t)ag + tay is an isotopy of contact forms with corresponding
Liouville X; = (1 —#) X, +tX,. However, suppose that there existed a point p € @) such that (X,), € T,M
were on one-side of T,Q C T,M and (X;),. We can make this more formal by picking a 1-form g € T;M
with kerf = T,(), and supposing that §((Xo),) > 0 and 5((X1),) < 0. Then there must exist a s such
that 8(X,) = 0, i,e (X;), € T,Q. But then [ix,(dw)"]|g cannot be a volume form on 7,Q). After all, if
X = 0 then [ix,(dw)"]|q = 0 and if X; # 0 then [ix,(dw)"]|g is 0 on any basis ey, ..., e,—1 of T,Q) with
e1 = (Xy)p. However, [ix, (dw)"]|q = n(ix,w) A dw™)|qg = nay A doy, which are all volume forms because
is a contact form. So Xy and X; must have Xy and X; on the same side of the hyperplane distribution
TQ C T M everywhere.

Exercise 3.63 Show that, if w is a symplectic form, then the only functions f such that fw is symplectic
are the constant functions.

Solution 3.63 This is technically false! In dimension 2, any two-form is closed so fw is symplectic for
every 2-form. Thus we may assume that dimM > 4.

We see that d(fw) = df Aw — f Adw = df Aw. Suppose df # 0 at some point. Then we can pick local
coordinates x1 = f,xo,..., %y, Y1,...,Yn centered at p so that df = dxr;. Then we can use the symplectic

95



Graham-Schmidt process, starting with e,, as the first, unchanged basis vector, to find a standard basis
at T,M where df = dx,. We then have in this basis:

dfy Nwy = day A (Y dag Ndy;) = day Ada; A dy;
i i#1

The right-hand side is evidently non-vanishing (being a simple sum of basis elements of A3M,,), so df Aw # 0.

Exercise 3.64 (i) Let D, denote the Siegel domain:
Dyi1 = {(z,w) € C" x C|lmw > |2|*}
and consider the map:
f:C —C" x {~1} = C" - C*{i}
defined by:
z w—1

Show that f maps the interior of the unit ball holomorphically onto D,,;;. (ii) It follows from (i) that the

boundary @ of D, has a canonical contact structure £ defined as in Example 3.47. Namely, at each point
q € Q, the contact hyper-plane &, is defined to be the complex part T,Q) N JoT,Q of the tangent space T,Q).
Prove this by direct calculation, and check that the contact structure so obtained is contactomorphic to
the standard structure on R***1. (iii) Write down an explicit contactomorphism S?"! — {pt} — R?" 1.

Solution 3.64 (i) The map is evidently holomorphic, being composed of rational functions in z and w.
We see that:
k& 1—Jwf?

2 2
<l < <
2"+ Jul T+wP = 1+ wp?

and: . . N a1
Im(—iw ——) = Im( “ilw—D(@+1)
w+ 1 |1+ w|?

Thus (z,w) € B> < f(z,w) € Dy.1.

1w
~ L+ up

)

(ii) Let B2 C C"*! have coordinates (z;,w) and D,,;; have coordinates (u;,v) where 1 < j < n. Let
2 = xj +1ixj, W = To+ Yo, u; = a; +1ib; and v = ag +iby. The map ¢» = f~! is given in these coordinates

by:
2i —v+1

“Uj, -
v+ U+

U(uj,v) = (

) = (2, w)

To calculate the contact structure on 0D, ; induced by the standard structure £ on S?"*! we will
characterize £ as the kernel kera of the standard contact structure and then compute the pullback *«.
Then the induced contact structure will be ker(¢*a’).With this goal in mind, first observe that the standard
contact 1-form « on B?"™2 can be written as:

1 1 ~ ~ 1
a= 5(; xidy; — y;dx;) = §Im(wdw + szdzj) = 5Im(ﬂ)

J
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Since v is holomorphic, we can calculate the pullback of the 1-form 5 (which is a product and sum of
anti-holomorphic functions and holomorphic 1-forms) via ¢ and then take *a = %Im(w*ﬁ). Calculating
using the expressions for z;, w given above, we see that:

21 —21u, —2i

—du; + Sdv  dw =
v

(v+1) (v+ z’)QdU

de =

Thus we have:

. —v+1 -0 21 21 21u;
V= UU+ iz)((v—I—Z)Q)dv—i_z(vﬁiiuj)(v—ﬁiiduj +ﬁdv)

1 —dful? +2i0 -2
(Al + 200 du+24ajduj)

- lv+ 1|2 v+
Now if we restrict to 0D,,11, we see that |u[* = Im(v) = S*(v — ©). Thus simplifying the above, we have:
) 1 2iv — 2iv + 2iv — 2 . 1
V*Blop,., = |v+i|2( " dv—i—zélujduj) " Z|2(22dv+42uduj

J

Thus we see that:

. (N 1
vralop,s, = SIm(Y"5) = m(daoﬁzajdbj—bjd%) =

J

e S

On the other hand, 0D,,;; is characterized as the set of points (u;, v) where:

bo = Im(v) = |ul* = Za +b2

i.e the zero set of the function g(u,v) = by — Zj a? + bj?. This means that the tangent space at a point is
equal to the kernel of dg, i.e the kernel of:

dg = dbg — 2 _ a;da; + bdb;
J

Thus we have the characterization f.£ = ker(dg)Nker(1)*«) of the pushforward f.£ of the contact structure
¢ on S?"*1 through f. On the other hand, the complex sub-bundle E C T(0D,,;1) can be characterized
as E = ker(dg) Nker(J*dg). So we just need to show that ker(J*dg) = ker(¢*a) to see that £ = f.£. But
see that J*da; = —db; and J*db; = da;. Thus:

J*dg|8Dn+1 = —dbo -2 Z —ajdbj + bjdaj = —|U + i|21/)*a|3pn+1

J

So the 1-forms J*dg and ¢*a differ by a non-zero scalar function (recall Im(v + i) = |u|> + 1) so they
have the same kernels. We show that f.£ is contactomorphic to &y in the next exercise. Note that we can
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abstractly observe that it is contactomorphic by using the isotopy of contact forms (1 —t) f.a + ta; where:

1
a1 = dag + 3 > ajdb; — bda;
J

and using the fact (Example 3.43) that o is contactomorphic to ag, the standard contact form.

(iii) We can use ag, a1, by, . .., dy, b, as the R?"*1 coordinatization of 9D, ~ R?"*!. Thus it suffices
to find a contactomorphism taking:

1
« =
ho= Ty, 21 0P

(dag + 2 a;db; — bjda;) = h(a,b)(dag + 2 _ a;db; — b;day)
- ,

J

to the standard contact form a. We can use ¢ : R*"*! — R**1 (g b) — (2,7,y) given by z = ag +
23, a;b;, x5 = 2a; and y; = 2b;. Then we have:

¢ ag = ¢*(dz — Y yjda;) = (d(ag+ Y 2a;b;) =4 bida; = h™* fua
J J J

Exercise 4.3 Calculate the local coordinate representation of the almost complex structure in Example
4.2 on S? using stereographic projection.

Solution 4.3 This is a pretty long calculation actually. The stereographic projection map v : S? C
R3 — R? and its inverse =1 : R? — S? C R? are given by:

1 4u 9

T
= 4 -1 =
V(u,v) WL 244 A uz” . v (2, 2) 1 z[y]

The almost complex structure is given on S? C R? as:

0 —z wy
Jp=Jpy-=| 2 0 —x
-y x 0

which is just the operator v — (x,y,z) X v. To find the corresponding almost complex structure in
coordinates given by stereographic projection, we must calculate ¥*J = Di/J;(lp) Jyp)D1p. Calculating, we
see that the Jacobians for p = (u,v) are:

4+ v — u? —2uv
4 wWHvr+4[2 0 —u
Dy=—"" ) A+u2—02 | DYvi(p)=—""" :
U= ey ap _41;“ +f4v v DYy () 8 {0 2 —v]’
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Furthermore:

0 w4vi—4 v
J, _ 4 2 2 0
YO T gz | ST —
—v U 0
Thus:
VS = D@Z);(lp)t]w(p)pr
0 wHovt—4 w 4+ v — 2 —2uw
= ! [2 0 —u} 4 — y? —v? 0 u 2uw 4+ u? —v?
T 22402 +4)2 0 2 — - B B -
(u? + v + ) v —v U 0 —4u —4v

-7

So the pullback is actually just the standard structure on C. Wow.

Exercise 4.5 Prove that the 2-form w,(u,v) = (x,u X v) is non-degenerate on the orthogonal compliment
of z € R".

Solution 4.5 Let z € R” — 0. We can assume x # 0 because otherwise this is trivially false (the form is
0). Take u € - C R”. Then consider v = x x u. We see that (z,v) = (v, 2 x u) = (x x x,u) = 0 s0 v is
in z+. Furthermore z X v = x X (¥ x u) = —u # 0 s0 v # 0. Thus we have:

we(u,v) = wp(u,z x u) = (r,u X (x X u)) = (r X u,x X u) >0

So there is a v € 2t for every u # 0 such that w,(u,v) # 0.

Exercise 4.6 Let (M, J) be an almost complex manifold of dimension 4k. Find an identity connecting
its top Pontriagin class with the Chern class ¢y of the complex bundle (T'M,J). Deduce that none of
the spheres S* admits an almost complex structure. Obtain a similar result for spheres S**2 for k > 2
using Bott’s integrality theorem which asserts that for any complex vector bundle E over S?*, the class
co(E)/(n —1)! € H*(S?") is integral (see for instance Husemoller [136, Chapter 18.9.8]).

Solution 4.6 Let (£, J) be a vector bundle with complex structure J. Recall that the Pontriagin classes
are defined as pi(E) = co1(E ® C). We will show that E® C ~ E ® E. Thus we will have:

pe(E) = (=1)*cu(E & E)

Il
—~
|
—_
~—

>
Ay
—~
&
~—
=)
)
E
L
—~
&
~—
Il
—~
|
—_
~—
x>
F/ﬂ
|
[a—
~—
<N
S
—~
S
~—
=)
[
x>
L
—~
&
~

To see that EQC ~ E@QE, consider the map ¢ : FEQE — E®C given by u®v + u—iJutv+iJv = ¥(udv).
Observe that:
Y(Ju®0) = Ju —iJ*u = iu+ Ju = i(u — iJu) = ip(Ju ® 0)

YO0 —Jv)=—-Jv+iJ(—=Jv) = =Jv+ v =1i(v+iJv) =i (0 B v)
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Thus this map is complex-linear on both factors. Since it is a bundle isomorphism (we can always pick
uw and v so that u +v = z and J(u — v) = y for any x and y so that )(u @ v) = = + iy) preserving the
complex structure, this proves £ ® C ~ E @ E as complex vector bundles.

A particular case here is the spheres S%*. In this case the lower Pontriagin classes and Chern classes
necessarily vanish because H'(S*") = Z if ¢ = 4n,0 and 0 otherwise. Thus we would have p,(TS*") =
2(—1)"c, (T'S*™) if S*™ admitted an almost complex structure. However, it is well-known that the Pontr-
jagin numbers (U\_,p; [[M]) = 0 for all i; with >_; i = n (see for instance Milnor Stasheff Lemma 17.3)
for a manifold M = ON for some compact manifold N with boundary. In particular, {p,(S*)|[S*"]) = 0.
But we also have ¢y, (E) = e(F) for any vector-bundle of rank 2n, and (e(S*"), [S*"]) = x(5*") = 2. So
the formula that we derived cannot hold. It follows that a complex structure cannot exist.

Bott’s result tells us that c,(E) = e(E) has <£L is integral. But we sce that (n+1)!<e(E), [S?]) =

(n—=1)!
’(‘75‘3217;? = (nfl)!. If n > 3, this is not an integer, so the cohomology class (z(fjl))! is not integral.

Exercise 4.9 Let (w, J, g) be a compatible triple and assume that w is closed. Prove that:
(Vi )v = (V,J)Jv

Find an example where w is not closed, and this equation is violated.

Solution 4.9 Using the third formula in Lemma 4.8 with dw = 0, u = u,v = v and w = Jv, we see that:
0= ((Vud)v, Ju) + (V,J)Jv,u) + (VS )u, vy = (Vo J)v, Jv) + (u, (VyJ)Jv — (Vg J)v)

Here we use the fact that (Vj,J) is anti-self-adjoint (the second formula in Lemma 4.8). Thus we just
need to show that ((V,J)v, Jv) = 0. But given any point p we can pick a vector-field o with o(p) = v(p)
and Vv = 0. Then at p we have:

2(Vud ), Jv) = 2((Vo )0, J8) = Vo (Jb, JB) = V,u(5,8) = 2(V,5,5) = 0

To find an example of a compatible triple that doesn’t satisfy this, consider the following. Given the stan-
dard triple (wy, Jo, go), we can conformally rescale gy and wy to get a new compatible triple (efwo, Jo, e/ go)
on R*". In coordinates, where gq is given by d;;, the new Christoffel symbols are:

. 1, . ; j
L. = 500k f + 610;f — 0340'f)

Observe that since, in standard R?" coordinates 0;Jo = 0, this implies that V;J = V,;J; = [I';, Jo] where
by I'; we denote the matrix (ng for fixed 7. In particular, consider R* with coordinates x1,y1, Z2, y» and
the standard triple with respect to these coordinates and ey, fi, e, fo the corresponding basis elements in
TR*. We will use the indices 1,2, 3,4 to denote derivatives in the respective ey, fi, s, fo directions. Then
the formula that we want to violate can be written as:

'y, Jo]Jer # [L'a, Joler
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if we pick v = e;.

Now we take a specific example. Let f(x,y) = z5. Then using the formula for the Christoffel symbols
given above, we have:

1 010 1 010
100 0 10 0
=11 01 0 =11 91 0
0 00 1| 0 00 1
00 0 —1| 0 01 0
00 -1 0 0 00 —1
F = F —=
[T, Jo] 01 0 0 (T2, o] ~100 0
10 0 0 0 10 0
0 0 —1 0
0 0 0 1
[Fl,Jo]Joz 1 0 0 0 [F17J0]J0€1:—[F1>J0]€1
0 -1 0 0

Thus, (e"2wy, Jo, €"2gp) is a counter-example.

Exercise 4.10 A sub-manifold L C M is called totally real if it is of half the dimension of M and
T,L N J,T,L = {0} for all ¢ € L . (i) Let (w,J,g) be a compatible triple. Show that any Lagrangian
submanifold L is totally real, but not conversely. In fact, L is Lagrangian if and only if JT'L is the g-
orthogonal complement of T'L. (ii) Prove that if L is a totally real sub-manifold of (M, .J) then there exists
a Riemannian metric ¢ on M such that ¢ is compatible with J, JTL is the orthogonal complement of
TL and L is totally geodesic. (iii) Show that if L is a Lagrangian submanifold of (M, w) then there is an
w-compatible J such that L is totally geodesic with respect to the corresponding metric g;.

Solution 4.10 (i) Suppose that L were Langrangian and T, LN .J,T,L # {0}. Then we can pick non-zero
veT,LNJ,T,L. v=Jw for somew € L, so Ju = —w € L and Jv # 0. However, w(v,w) = w(v, Jv) > 0,
contradicting the fact that T'L is Lagrangian. So L is totally real.

Counter-examples to the converse can be found in the linear theory: for instance, take (wyg, Jo, go) to
be the standard compatible triple on R* with coordinates xi, 2,91, y» and corresponding tangent basis
e1,es, f1, f2. Then take R = span(ey, f1 + f2). Evidently this is not a Lagrangian subspace, since w(ey, fi +
f2) = 1. However, JR = span(f;, —e; + —e3). Since R ® JR = R* and dim(R) = 2, JRN R = {0} by
dimension counting. So R C R* is an example of a totally real submanifold that is not Lagrangian.

(ii) Consider an almost complex manifold (M, J) and a totally real submanifold L C M. We begin by
choosing a tubular neighborhood N >~ N’ C vL of L and a projection 7 : N — L such that ker(dr), = JT,L
for each p € L. We can do this as so. Let h be any metric on L. Then we may consider the metric h ® J*h
on TM|, = TL® JTL. The metric will be largely fiducial, so we won’t give it a better name. We can then
take a covering of N by trivializations D™ x U, with U, C L and extend the metric from T M|, to TM|x
by doing so trivially on D" x L (in coordinates) and then using a partition of unity over the U, to add
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the metrics together. We can then choose an isomorphism N ~ N’ C vL where M is the normal bundle
with respect to our figucial metric. The projection 7 is then given by the pullback through N ~ N’ of the
standard projection vL — L. Note that, by our construction of this metric, 7L+ = JTL, so the kernel of
the projection is JT,L at any point p € L, as desired.

Now we want to construct an even better metric using this projection operator. To do that, we sort of
repeat the construction of h & J*h, but this time on all of N. Let h again be any metric on L and define
g =m*h @ J*r*h on TM|y. This is a metric since, by shrinking N, we can assure that 7*T'L C TM is
a totally real sub-bundle® which implies that g is a well-defined metric. This metric is J invariant since
J*g = J(r*h& J*t*h) = (—=1)*t*h@& J*r*h = 7*h® J*m*h (note that the summands switch places because
J interchanges TL and JTL). Since J? = —1, we have g(v, Jw) = g(Jv, J*w) = —g(w, Jv). Thus this
metric induced an almost symplectic form w = g(-,J-) on TM|y. We can extend this metric to the rest
of M by choosing a smaller tubular neighborhood O of L, picking an arbitrary compatible metric ¢’ on
M — O, and then using partitions of unity o and [ supported on M — O and N respectively to extend g
by ¢’ to all of M. We will also refer to this extended metric as g.

We have constructed g so that ¢ is compatible with J and so that TL+ = JTL. It remains to show
that L is totally geodesic. To see this, we pass to the normal coordinates on N ~ N’ C vL. Take these
normal coordinates to be (x1,...,Zn, Y1, ..,Yn). Here, since we defined g = 7*h @ J*r*, it can be written
as a block matrix:

[ A [yl f (2, y)
9(z,y) = [y f(x, )T JE(z,y)h(x)J](z,y)

This implies 3 important facts. First, g(z,0) is a block matrix (i.e, along L the metric is a block matrix).
Second, Oy, gz;0; = Oy ha,e; = 0 (the subscripts on the metric denote that entry in the matrix, not
derivatives). Third, Oy, 9e,y;, = |Y|0, f(2,y) = 0 when |y| = 0 (i.e, along L these derivatives are 0). These
3 facts together with the formula for the Christoffel symbol I'J%, ~implies that I'f%, = 0 for all ¢, jk. In
particular, for any curve v € L we have ¥ € TL and ¥ € T'L (in coordinates at least). Furthermore for
any point p = (s) we have [Vy(s)]y, = [(s)]y, + 225 ; T, (V(8)[(8)]e;[7(8)]z,] = 0. In other words, the
covariant derivative V+ is in T'L for every curve vy : I — L. Thus L is totally geodesic with respect to g.

(iii) It suffices to prove that we can pick a compatible J for some tubular neighborhood N of L with the
desired properties. This is equivalent to picking a compatible metric ¢’ on N with the desired properties.
Then we can extend the metric to a global metric g on M using a partition of M into M — O and N with
O C N, and some partition of unity over N and M — O (just as above). Afterwards, we can recover a
global J agreeing with J on O by using the inverse to the map described in Proposition 2.50(i).

By the Lagrangian neighborhood theorem, we can further reduce to the case of a tubular neighborhood
N of the zero section L C T*L.

In this setting, we consider the symplectic bundle (7'(7 * L),w) which is the tangent bundle of the
cotangent bundle equipped with the canonical symplectic form. Note that there is a map of symplectic
bundles 7 : T(T*L) — T(T*L)|, which covers the projection 7 : T*L — L and is an isomorphism on the
fibers. This is literally the map (z,y,u,v) — (x,0,u,v) — (z,u,v). This restricts to a map of symplectic

6The totally real condition can be formulated as a determinant condition on a basis for e; € 7*TL and its corresponding
basis Je; € JTL, in particular as det([eq,...,e,,Je1,...,Je,]) # 0, and thus is easily seen to be an open condition by
picking a local trivialization.
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bundles 7 : T(T*L)|y — T(T*L)|;, which covers the projection 7 : N — L.

Now we may pick any compatible almost complex structure J; on the bundle T(T*L)|, and pull
it back through the bundle map 7 to get a compatible structure J = 7*J;, on (T'N,w). The pullback is
compatible because 7 is symplectic. Furthermore, the resulting metric g; has a block matrix decomposition
similar to the one described in (ii). In fact we have an even better decomposition: if we denote the
restricted symplectic form on T(T*L)|, by wy and the metric wg(-, Jr-) by gz, then g; = 7*gr, so in
the normal coordinates g has no dependence on the y variables whatsoever. In particular, in coordinates
(T1,. oy Tny Y1,y - -+, Yn) We have:

gs(x,y) = [7"grl(z,y) =

M e |71 ke

In particular, the same arguments as above show that Fg‘;,xj = 0 in this metric and these coordinates, so
an identical argument to the one above shows once again that L is totally geodesic.

Exercise 4.13 Check that the type (1, 0) vector fields on (M, J) are precisely those of the form (1—i.J)X
where X is a real vector field on M. Deduce that in the integrable case they have the form ) i a’ %, where

the a’ are complex-valued functions on M.

Solution 4.13 In coordinates, we can write any vector-field V as V = 3 aj% + bjaiy. Then if V' is
J J

type (1,0) we have:
0 0 . .0 .0
Ej _bja_{L‘j+aja_yj —JV—’LV— Ej laja—xj‘i‘lbja—yj

So a; = ib;. thus we have:

Exercise 4.17 Given 7 € H denote by j, € R?*? the complex structure associated to 7 as above and
define the map ¥, : R? — C by V. (z,y) = = + 7y. Prove that:

‘IJTOjT:io\IIT

or, in other words, U*i = j.. Prove that every linear isomorphism ¥ : R? — C factors uniquely as ¥ = AW,
where A € C* and 7 € H. Deduce that the space H ~ JT(R?) is diffeomorphic to the homogeneous space
GL*(2,R)/C* = SL(2,R)/S.
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Solution 4.17 For p = (z,y), we calculate that:

F 41 1 F F? - GE F
2ty =~y i+ ) = —Fo+ "y + Foti(a+ )

ioWr(p) =iz +

= (~Fr— Gy) + ) (Ba + Fy) = [0, 05](0)

Now let ¥ : R? — R? be any linear map. Then if we define j = ¥~! o0io ¥ we certainly have io U = Wo j.
Furthermore, j = U™l ojo WU = & ! 0j o ® where dv = m\llv, i.e j is conjugate to ¢ via an element of
SL(2,R) = Sp(2,R). Thus j remains compatible with wy (since j = ®*i and wy = P*wy) and is equal to j,

for some 7. Thus ¥ : R? — C is an intertwining operator for j, and i for some 7.

Now consider Wo W1 : C — C. We see that Wo W loi=Voj, oW, =ioWoW l SoWol l=)\e
GL(1,C) = C*. Thus ¥ = A\¥,. To see uniqueness, suppose that k¥, = AU,. Then for all p = (z,y) we
have:

(z +oy) = (z+7y)

> x

In particular, setting x = 1,y = 0 we have Kk = A\. Then setting x =0,y = 1 we have 0 = 7.

Exercise 4.18 Two Riemannian metrics g; and go on M are called conformally equivalent if there exists
a function A : M — R such that go = Ag;. A diffeomorphism f : (M, g1) — (Ms,g2) of Riemannian
manifolds is called conformal if f*g, is conformally equivalent to g;. This means that f preserves angles
and orientation. A metric g is called compatible with an almost complex structure if g(Jv, Jw) = g(v, w).
In the case of dimM = 2 prove that any two metrics g; and g, which are compatible with J are conformally
equivalent.

Let (31,71) and (X2, j2) be 2-dimensional complex manifolds with compatible Riemannian metrics ¢
and gy respectively. Prove that a diffeomorphism ¢ : 31 — 35 is holomorphic if and only if it conformal.

Solution 4.18 First let g1, g2 be compatible with j on the Riemann surface (X,7). Let p € ¥ and
v # 0 € T,X be arbitrary. Observe that Jv # 0, Jv is independent from v (since J has no real eigenvalues),
gi(v, Jv) = gi(Jv, J*v) = g;(Jv,—v) = —g(v,Jv) (thus g(v, Jv) = 0) and g(Jv, Jv) = g(v,v). Thus
w = av + bJv for any w € T,X. Now let A(p) = %. Then observe that:

Go(w,w) = a’gz(v,v) + b2ga(Jv, Jv) = (a® + b*)ga(Jv, Jv) = (a* + b*)A(p)g1(v,v) = A(p) g1 (w, w)

Note that we only have to check ga(v,v) = Agi(v,v). Then we get pairings g;(v, w) by gi(v,w) = 3(g(v +
w,v+w)—g(v,v)—g(w,w)). We get to the last step by reversing the calculations for the first few steps with
g1 instead of go. Define A : M — R. Note that by this proof, it does not matter which v € T, M —0 we pick
to define A, any v will yield the same answer. Furthermore, we can pick a smooth section v : U — TX|y
in a neighborhood of p to define A at each point near p to see that A is in fact smooth. So ¢go = Ag; and
the two metrics are conformal.

Now consider a map ¢ : (X1, j1, 1) — (29, Ja, g2) as described above. First assume ¢ is holomorphic.
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Then ¢*gs is compatible with j; since:
¢*ga(J1s J1°) = ga(doji-, doji-) = ga(jade, jodg-) = ga(dg-,do-) = ¢*ga(-, )

Thus the above theorem implies that g; and ¢*gs are conformal. Conversely, if ¢*go = Ag; then for any
non-zero v € 1,3 we have:

92(dv, jadgv) = 0 = g1 (v, j1v) = A(p)ga(dev, ddj1v)

92(J2ddv, jodv) = ga(ddv, dpv) = Np) " g1(v,v) = A(p) "' 91(j1v, j1v) = ga(ddjrv, dpjiv)

These two calculations show that for every v € T,%;, jodpv = £dpjiv. Since d¢ is linear, this implies
that jy o d¢p = +d¢ o jy, either holomorphic or anti-holomorphic. But g;(-, —j1-) = —wj, so the orientation
induced by ¢*j, = —7j; (which is represented by the non-vanishing 2-form —ws, or indeed the 2-form
g(+, —j1) for any compatible metric g) is the opposite orientation to the orientation of ¥y, represented by
wi. Thus in order for ¢ to be orientation preserving, it must be holomorphic.

Exercise 4.20 Express the chain rule in terms of the operators % and (%_. Prove that ¢ : C* — C is

holomorphic if and only if d¢ = 0. Prove that if ¢ : C* — C is holomorphic then:
¢ 0w = 0¢*w, " Ow = DP*w
for every complex-valued differential form w on C".
Solution 4.20 The usual chain rule says that if ¢ : R? — R?*™ and 1 : R?"™ — R?" are smooth functions,

then d(¢0¢), = dibyy) odg,. Here dp, : T,R* — T, R*™ is the map of tangent spaces given in coordinates
z on R* and y; on R*™ by:

8%

and similarly for 1,1 o ¢. In coordinates, this can be written (now with z; as real coordinates on R?") as:

Z al, | (_ ® dl‘k) = d(d) ¢) Z (8_yp|¢(p Oy |p)(8 & dyp) (ayq X d:pk)
ak 3 kpsq
(9 8 Ota,
7.ka J
Or more simply:
3?/1 (9%
T “om, T Z - ?®) O E?x
Now define duj = dw; + idz;4; and du; = dr; — idzj4. Dually, define % — % _ Zaxa and au— _
% + iaw? Also define ®; = ¢; + i¢;, &; = ¢; — i¢;. Finally, impose similar identities for for y;, z; w1th

complex variables vj,w; and define ¥ snnllarly with respect to ). Then by substituting the definitions
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above into the simple version of the chain rule identity and simplifying, we find that we may write:

AW o ), oV, 0%,

i = i 0,
our, T - ov, @) ouy,

n ov | |
P - v () O p

The analogous identities hold for the pairs j, k; k, j; and k, j substituted for j, k. This is the version of the
chain rule for holomorphic and anti-holomorphic partial derivatives.

Now we prove that ¢ : C* — C is holomorphic if and only if d¢ = 0. We take as the definition of
holomorphic that ¢ satisfies the Cauchy-Riemann equations in each pair of variables x;,y;. We see that
0p = Z dz] The elements dz; are independent covectors in the cotangent space at a point, so dp =0

if and only 1f g = 0 for each j. But if we write ¢ = a + b for real functions b, we see that this says:
J

%— @—@)%—Z(@—i—ﬁ)
82]‘ N al‘j ﬁyj ayj al'j

The above vanishes if and only if the real and imaginary part vanish, i.e if and only 1f —|— 88; = % — 88—: =
J J

0. But this is precisely the Cauchy-Riemann equations in x;, y; for a and b.

Now we prove that ¢*Ow = 0¢*w if ¢ is holomorphic. It will follows that ¢*0w = d¢*w since we will
then have:
P*Ow + ¢* 0w = ¢*dw = dp*w = Jp*w + 0" w = " 0w = Dp*w

First observe that, like the usual exterior derivative, we have d(a A B) = da A B4 (—1)%8@a AJB. Indeed,
this is typically how we define the extension of 9 and 0 to the higher k-forms. Thus we need only prove
this result for 1-forms. Then we can proceed as so. Suppose that we have proven the result for 7 < k
forms. Then we have, for any k-form w, an expression » ;0N B; for a; 1-forms and 3; kK — 1-forms.

P 0w = Z ¢*0(a; A B;) = Z ¢* (0o A B + (—1) oy A OB))
Z ¢ 0a;] A [¢* 6] + (1) Mo a,] A [9°05]) = Z[3¢*aj] A[e*Bi] + (=) e ;] A [09755))

_Za N ) Za¢ (0 A Bj) = 0w

Now suppose a = Z]‘ ajdzj + ajdz; is a 1-form. Then:

0¢a_§6 a(Zsadz A dz, + ag o p— <25aclz—/\alzk)
day, ¢y Oda dag ¢y Oa 32¢a
= dz; Ndz, + dz: Ndzg + ag dz: N\ dzx
J%;k[ 0z ° ¢) 0z; 0z, % Nz | 0z ° ¢) 0z; Oz AR da© (baz;a,; KA
= ¢* (Z 904 —dz, Ndzy + — Oaq —dzg Ndz) = ¢*0a

aZb azb
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Exercise 4.22 Let f(z) be a real-valued function on C". Find conditions under which the 2-form 90 f
is nondegenerate and compatible with Jy. Deduce that the above form 7y is non-degenerate and compatible

Solution 4.22 Via the natural identification of anti-symmetric 2-tensors and 2-forms, we have:
! 1
§dzi Ndz; = é(dzz ®dz; — dz; ® dz;)

When we compose the latter with J we get:

1 ? 1 1

Thus the symmetric tensor given by [%8(‘5 f1(-, J-) is given by:

82f
6 i0z; 2

°f
—(dz; @ dzj + dz; @ dz;) = dz; ® dz;

This is evidently a Hermitian bilinear form, which is a symmetric form on the underlying real space. It is

positive definite if and only if afiéi - is positive definite Hermitian. Thus this is the condition for w = %8(‘5 f
Cadad]

being compatible with Jj.

To see how this applied to 7y, observe that in the chart Uy where zy # 0 we have 79 = %85 fo where:

fi(z) =log(1+ > w,w,)

v=1

We can compute that:

9o _—

(1+ |w]?)op — Wwy,
(14 |w]?)?

%agfo = )dwl A dﬂ)k

Then observe that if u = (ug) is a unit norm complex vector then:

1= 1 1
(1 + |w|2)—88f0(u, Ju) = |u]2 — ﬁku_)lwkul Z |u]2 — —| Hku_)lwkul
2 TFToF 2 e 2

> Jul* -

) ) _ jw?
lel| |wil Z|Uz| | Jul*(1 - 1+|w|2) >0

Thus the resulting 7y(-,J-) is positive definite. Note that by symmetry this works in U; when j # 0 as
well.
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Exercise 4.23 1In the case n = 1 prove that the symplectic form 75 on CP' = C U {00} is given by:

dx N\ dy

T U2 17

in the usual coordinates z 4 1y on C. Use stereographic projection to prove that this form agrees up to a
factor with the area form on the unit sphere S? C R3. Prove that the area of (CP!, 1) is m, while that of
the unit sphere in R? is 4.

Solution 4.23 Since there is only 1 complex coordinates in C, z say, we see that:

(1+ =) — |2
(1+]2[?)?

7

sdx A dy

U= l _

Now consider the stereographic projection map from the unit sphere centered at the origin to the
(x,y) plane, away from the point (0,0,1). We use cylindrical coordinates (z,#) for the sphere, cylindrical
coordinates (r, 0, z) for R* and polar coordinates (p, ¢) for R%. The map is given by:

1—=2
142

dp 1 [1+ 2
dp—gdZ—(1+Z)2- 1—de do = df

1 1 1—=z 1 1+ z 1
Uty = " (———==pdp N\ dop) = . . . dz Ndf = —dz N db
T0 ¢ ((1+p2)2p 4 ¢) (1+1;2>2 1+Z (1+Z>2 1— 2 < 4 <

14z

0,2) — (V1 —=2%20,2) — ( 0) = (p, ) = U(z,0) € R?

Thus we have:

Thus:

As we saw in Exercise 3.1, this is § times the standard volume form. Since [, ,dzAdf = 2r-(1—(-1)) =
47, we have that the standard sphere has voluem 4, while the sphere under the Fubini-Study metric has
volume 7.

Exercise 4.24 Prove that a complex submanifold of a Kahler manifold is itself a Kahler manifold.

Solution 4.24 Let S C M be the submanifold of the Kéhler manifold (M, g,w, J) in question. Consider
S with the metric h = g|s and the complex structure j = J|g. Metrics can always be restricted to
sub-manifolds, and by the definition of a complex sub-manifold we have T'S = JT'S, so that J also
restricts to an almost complex structure (which is integrable, also part of the definition of a complex
submanifold, although we will not need this in our proof). Also observe that for any v, w € 7,5, we have
h(jv, jw) = g(Jv, Jw) = g(v,w) = h(v,w), so j is almost compatible with h and w(-,-) = h(-,j-) is almost
symplectic. Thus all we need to do is prove that dw = 0.

But observe that V"j = V9J|s = 0 for any v € T'S. Indeed, in any neighborhood U of a point p € S
we may pick an orthonormal basis e; of g|g at 7,5, extend it to an orthonormal basis e; on T,,M, then we
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can pick coordinates z; in U so that p =0, 0,, = ¢; at pand SNU = {(x;)|2441 = Tpyo = -+ = x, = 0}.
Let T and T' denote the Christoffel symbols for ¢ and h respectively. In these coordinates at p and for
a, b, c denoting indices of coordinates x; with corresponding tangent basis vectors e; which are parallel to
S, we have the following:

. ~ 1 1
hadrgc = 1—‘abc = E(abhac + achab - aahbc) = i(abgac + 8cgab - aagbc) = FCLbC = gadrgc

Indeed, in these coordinates at p we have g,q = heq = 04q since we chose e; to be orthonormal, so this
implies that at p:

be = Lhe
Now recall that J is anti-self-adjoint, which in these coordinates at p means that J = —JT or J& = —J¢,
and J preserves 1,5 = span(ey, . .., e;), which in these coordinates means that J¢ = 0ifb € {1,...,k} and
a € {k+1,...,n}. By the anti-symmetry, this implies that J{ is a block matrix, i.e J¢ =0ifa € {1,...,k}
and b € {k+1,...,n} as well. This implies that if a,b,c € {1,...,k} we have:

Ve = 0cji + Tiygd — T%54 = 0.J¢ + Ty J¢ — T4 J8 = V. J¢

This is because we clearly have 0.j; = 0.ji at p, and then the fact that J is a block matrix in this
coordinates system implies that in the expression I'¢,J¢ (which is summed over the index d) it suffices to
sum only over the d € {1,...,k} since for other Values J4 vanishes. Then that sum is equal to de j¢ since
Ie, =T¢, and j¢ = J? for that range of d and c. The same discussion holds for the last term. This shows
that V"j = V9J|s in local coordinates.

Exercise 4.30 Compute the Chern classes and Betti numbers of a complex hypersurface M c CP"*!
of degree d.

Solution 4.30 We can start by using the Lefchetz hyperplane theorem. Any complex hypersurface of
degree d in CP™"! can be realized as the zero set of section of the unique holomorphic line bundle L
with Chern class ¢;(L) = PD(d[H]) where [H| € H,,(CP™";Z) is the hyperplane class. This comes from
the line bundle divisor correspondence in complex geometry, and also from the fact that H*(Ogpni1) =
H?(Og¢pnt1) = 0, which implies that Pico(CP™"!) is 1 point, and thus that line bundles are classified by
degree for CP"1,

Now we can consider a basis of the holomorphic sections of L, oy, ..., 0r. We see that for any two points
p,q € CP™"! there exists a section ¢ such that o(p) = 0 and o(q) # 0. If this were not the case, then
every degree d hypersurface containing p would also contain ¢, since any section vanishing at p would also
vanish at ¢. But this is clearly false: we can take a collection of d linear polynomials /; which vanish at p
but not ¢. Then we can take p = [[. ; and perturb the coefficients slightly. For a generic, sufficiently small
perturbation the result will be a smooth degree d curve containing p but not ¢g. The point of this is that
this implies that the map ¢ : CP"** — CP* given by p + [00(p), . .., or(p)] is injective; if 1(p) = ¥(q) for
some pair, then any section that vanished on p would vanish on g¢.

Now if we pick o¢ so that M = {p|og(p) = 0}, then M ~ (M) ~ H N (CP""') where H =
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{[zo,...,zx]|zo = 0}. Thus by the Lefchetz hyperplane theorem, we know that for i < n we have
H(M;Z) = H(CP"";Z) = Z if i is even and 0 otherwise. Furthermore, by Poincare duality we know
that H'(M;R) ~ H**"/(M;R). Thus b; = 1 if 7 is even and 0 if ¢ is odd when ¢ # n.

To proceed further we should calculate ¢(TCP™!) and c¢(vM). To do this, observe that we still
have T,CP"*! ~ Hom(L, L*) and C ~ Hom(L, L)7, as the argument for these facts is not dimensionally
dependent. Here L is the tautological line bundle on CP"'. Thus we have TCP"™ & C ~ Hom(L, L &
L*) ~ @""2L*. Thus by the properties of the total Chern class with respect to Whitney sums, we have:

c(TCP™" ) = ¢(TCP"™ @ C) = c¢(®"2L) = c(L*)""* = (1 + h)"?

This is because ¢;(L*) = —c;(L) = —(—h) where h is the generator of H?(CP™"!) corresponding to
the hyperplanes via Poincare duality. this implies that ¢(TyCP"*!) = c(i*TCP") = i*¢(TCP"*!) =
(1 +4*h)"*2.

For vM, we observe that ¢;(vM) = e(vM) = PD([o = 0]) where o is a section of vM intersecting the
zero section transvsersely. But we can identify v M diffeomorphically with a tubular neighborhood of N
of M Cc CP™! via amap i : vM — N sending the zero section to M itself. Under such an identification
the graph of o becomes a sub-manifold o(M) intersecting M transversely and homologous to M. Thus
iJo = 0] = i,[M] Ni.[M] € Hyo(M). In particular, if we take a surface ¥ of M representing class
[X] € Hy(M;Z) then we have:

{er(vM), [2]) = [X] - (M] O [M]) = ]3] - i [M] = (PD(i[M]), in[E]) = (dh, i.[X] = (di"h, [X])
So ¢;(vM) = di*h and ¢(vM) = 1 + di*h because it’s a line bundle. Thus by the Whitney sum property

we have ¢(TyCP"™) = c(vM)c(TM) so that:

(TM) = (1+di*h) ™ (1 + iRy = (3 (—1)di*h)( (" j 2)@*/#) e (Z fj) )it bt

§=0 =0 k=0 j=0

For our final observation, which will give us b,, we note that (i*h", [M]) = (h",i,[M]) = PD(h") -
i*[M] = PD(h)™-i*[M]. Since PD(h) is a hyperplane, the n-time intersection of n transversely intersecting
representatives of PD(h) is a line, and any line intersects a degree d hyperplane d times. Thus we have:

X(M) = {e(M), [M]) = {ea(M), [M]) = > (~1Y & (n : 2')

n —
=0 J

Thus we can use:

to write:

"This second point is obvious, the first one less so. The elaboration is poor in the book, but you can find an explanation
in Ch. 3 of Milnor-Stasheff.
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We can check this when n = 2, so that the result is:
by = d® — 4d® + 6d — 2
This is correct!
Exercise 5.3 Consider the action of S!' on R?***2 which, under the usual identification of R?"*2? with
C"*! corresponds to multiplication by e*™. By Exercise 1.21 this action is generated by the function:
H(z) = —7|z)?
Prove that the symplectic quotient at A = —7 is CP"™! with the standard symplectic form 7y defined in

Example 4.21 above. This construction shows that 7y is U(n + 1)-invariant.

Solution 5.3 Consider the Fubini-Study form 7y as described on p. 131 and consider the projection
7 : C"™ — CP™ given by (o, ..., %n) = [Zo,...,z,). We start by showing that 7*7) = 200 f where:

n
(2,2) = Z 2,2,
v=0

To see this, we first observe that:

n

‘ > (Ezda Adz, — Zzdz A dz)

0= s
A0 %a) 5

This is the expression given for 75 on p. 131, but it is actually an expression for the pullback which descends

to a 2-form in the patches U; given by coordinates (wy, ..., w,) = (j—;’, - ij;l, ZJ;, 'Z”) It’s labelled in a

very misleading way. Anyway, we just need to show that this expression is %85 f. But we see that:

1 = _1 _ 7 5jk B 2]'2].3 ‘ _
5001 = 288(;&/21, = ZZ 50 = 2%:(23_0%% )t N

) )
= Z Zizidz, Ndzy — Zjzpdzy N dz, =

20200 22)?

Now, both 7*7 and wy restrict to 2-forms on S?"*! which are equivariant under the U(1) action. Further-

5 aa) Z Z Zizidz, N dZ, — Zjzpdz; N dZzy)
v=0 Zv) k=0 j#k

more, under the quotient map ¢ : S*"*! — CP™ induced by restricting 7, the equivariant 2-form 7*7g|g2n+1
goes to 79 by construction. Thus if we show that the 2-form @y which wy descends to on CP" agrees with
70, it will follow that (S?"™1/S' &) ~ (CP",19). It suffices to show that m*7g|g2nt1 = wp|gzn+1. To see

this, observe that on the unit sphere we have |z|? = 1 by definition, so:

1= 1 N N —1 _ _
Eaﬁf =3 ;(@-k — Zjzp)dzy N dzZp = wo + - Zk Zizpdzy N dZ, = wo + €
7] ]7
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Thus we just need to show that the 2-form € is 0 on S?"*!. But suppose that w = (wy, ..., w,) is a tangent
vector at z = (20, ..., 2). Then we have w-z =} w;z; = 0. Then we see that:

ly€sy = E Zjz(dzjwy, — w;dzy,) = g w - 2Zjdz; — E z-wzpdz, =0
J k

j?k

So the restriction of € is 0.

Exercise 5.4 We saw in Exercise 4.23 that:

/ To =T
cp?

Find yet another proof by interpreting this integral in terms of the Hopf fibration 7 : S* — S? = CP!
and showing that it equals the integral of wy over a disc in R* whose boundary lies along one of the fibers
of my.

Solution 5.4 This is actually a subtle question that involves some serious background discussion. Given
a smooth fiber bundle 7 : E — B with closed fiber F' of dimension k, we have an integration map (a
“pushforward” if you will) on k-forms, 7* : Q*(E) — Q"%(B) given by integrating over a fiber, namely:

() p (v, .oy Upg) = / a
7 (p)

This is largely a motivational formula since the integral above does not obviously have an invariant inter-
pretation. We will need the following properties of this map. First, this descends to a map on cohomology.
Second, for any o € Q*(F) and any 5 € Q*(B) we have:

/Ea/\ﬂ*ﬁz/Bma/\ﬁ

The details of this construction can be found in Bott & Tu, Ch. 6 (although the treatment there focuses
on compactly supported cohomology when F is a vector space).

Now we apply these ideas to our situation. Consider the Hopf fibration h : S® — CP! where we consider
S3 as the unit sphere in C2. Also consider the 1-form a = %(ZZ x;dy; —y;dx;). Notice that da = w where w
is the standard symplectic form on C?. Furthermore, observe that a|gs is a contact form on S® with Reeb
vector-field given in complex coordinates as R(z) = 2iz for |2|? =1, i.e z € S3. The S'-action/Reeb flow
generated by this ¢(z) — e**z (which is just a reparameterization of the U(1)-action discussed in Exercise
5.3), and the quotient by this action can be identified as CP! with the quotient map ¢ : S* — S3/S* being

the same as the Hopf fibration map.

Now observe the following. First, irae = 1 identically (this is part of the definition of the Reeb vector-
field). Thus if we pick a point p € CP! and we parameterize h~'(p) by an integral curve of R, v say, then

we can find h,a € Q°(CP'):
h*a(p):/ Oé:/i:yOé:ﬂ'
h=1(p) g
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Thus if D is any disk bounding v = 77!(p) in C?, we have by Stokes theorem that:

7T:/ a:/da:/w
h=1(p) D D

But we can also apply our knowledge of j.a to get the volume of CP!. Namely, we know by Exercise 5.3
that h*7T = w|gs. We will just denote w|gs as w. Thus by the integral identities for , above:

7T/ T:/ 7T*Oé/\7':/ oz/\7r*7':/ a/\w:/ d(aAw):/ w2:2/ dxl/\dyl/\dxg/\dyg:7r2
cp! cp! 53 53 B4 B4 B4

Thus we have:
/ To =T = / w
cpl D

as desired.

Exercise 5.11 Show that 2 (defined on p. 160) has maximal rank on the odd-dimensional manifold
P x S?, and that its kernel consists of all vectors tangent to the S!' orbits. Deduce as in Lemma 5.2
that there is an induced symplectic form on the quotient M = P x ¢ S?. Identify this form with the one
constructed in Example 5.10.

Solution 5.11 Let P — B be an S! principle bundle with a 1-form o € Q!(P) satisfying ixa = 1 and
da = —7*p where X : P — TP is the generating vector-field of the S! action and p is a closed integral
2-form on B. Let 1y be a symplectic form on B such that 75+ Ap is also symplectic for A € (0, 1). Consider
P x S? with the S* action a(p, s) = (a-p,a™' - s) and define:

Q=751 —d(Ha) + méo

Where H(p,s) = h(s) is the height function on S?, 7wz and g are the projections to B and S?, and o is
an S! invariant volume form of unit volume on S?. We assume through-out that we are away from the
singular strata, i.e wherever the height function is 0 or 1.

Now suppose (p, s) € P x 5% where h(s) # 0,1 and v € T, ((P x S?). Then v = w & u where w € T,P
and u € T,S%. Now suppose that i, = 0 at p. Let 7pp : P — B denote the projection map. Then we
see that:

0 =1, =1,(mp70 — mgdh N o — Hda + mg0) = i, (n5(10 + Hp) + 750 — medh A mha)

= mp(lwTp (1o + Hp)) + 75(1u0) — m5(iudh)Tpa — T5(dh)Tp(iw)
= p(mp plins ,u(T0 + Hp)) — m5(iudh)r) + 75 (w0 — wp(iwa)dh)

This mean looking set of manipulations is meant to get us to an expression with pieces that must vanish
independently. In particular, in order for the above expression to vanish, both the 7} part and the 7§ part
must vanish, since the images of 7 and 7§ are independent. Furthermore, o and the image of 7 5 are
independent by construction of a, so in order for irs, (70 + Hp)) — 7§(iudh)a = 0, both of those terms
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must be zero as well.

Thus we have ir: .,(70+ Hp)) = 0. But H(s) € (0,1) and 7+ Ap is symplectic for that range of A. So
ins, cw(To + Hp)) = 0 if and only if 75 pw = 0, i.e if w is a multiple of X, the generator of the circle action
on P, at each point. Since 7§(i,dh)a = 0 and « vanishes nowhere, we know that i, dh = 0.

Thus suppose that w(p, s) = aX (p) and u(p, s) = bX(s) for some constants a and b. Then we see from
the second vanishing condition that:

0 =iy — Tp(iwa)dh = blix, 50](p) — brp(ixa)dh(p) = bdh(p) — br*1dh(p) = (a — b)dh(p)

Thus @ = b. So any v where 7,2 = 0 is of the foom v = w ®u = f(X & —X},). But the vector-
field X @ —X, exactly generates the action on P x S2. Indeed, we see that if the action is given by
(p, 8) = ¥i(p, s) = (VF(p), () 71(s)) then differentiating with respect to ¢ in and evaluating at 0 gets us:

d¢f(p)| d[p?]7(s) A
"7t dt

d 5\— Py—
Cp, 9o = ( o) = (X(0), (@09) (0F) ™ (8) 0 oL (p)]co) = (X (0), —Xa(p))
Thus € is a maximal rank 2-form with kernel equal to the tangent space of the S* orbits on P x S?. It is
also closed and equivariant with respect to the S* action, since each of the terms is closed and equivariant.
For instance, m57p is closed because pullback and exterior differentiation commute and it’s equivariant
because i1y = wH(YE)* 19 = 7h7o. The rest of the terms can be checked similarly. Thus this map

descends to a well-defined symplectic form on the quotient P x S?/S* = P x g1 S%

Evidently by Proposition 5.8(ii) this form is equivariantly symplectomorphic over its domain of defini-
tion to the one constructed in Example 5.10. However, that one is constructed abstractly using Proposition
5.8(i), so a more explicit identification doesn’t seem possible.

Exercise 5.12 Prove that Q is symplectic and is invariant under the diagonal action of S*. Show that
V*P is equivariantly diffeomorphic to P x R and that the moment map p: W = P x R x S? — R is given
by:

pp,m, 2) = hiz) —=n
where h :>: S — R is the height function used above. Show further that 0 is a regular value of p and
that the level sets ~!(0) can be identified with the manifold P x S? by a map which takes Q to Q. Thus
(M, w) is the symplectic quotient of (W, ).

Solution 5.12 Recall that  is defined on W, using the same information as in Exercise 5.11, as:

Q= 7pTo + i Wean + Tgx

Here i, : V*P — T*P can be written explicitly as a — a(X)a.

Exercise 5.13 Assume that the symplectic form w is exact (and so M is not compact). Choose a 1-form
A such that w = —dA. A symplectic action of a Lie group G on M is called exact if ;A = A for every
g € G. Prove that every exact action is Hamiltonian with He = ix A for § € g.
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Solution 5.13 This is a simple computation. If we let g : I — G be a path in G with go = 1 and

dgt
dt

by assumption. Thus we have:

i—o = £and we let 1), = ty(;) be the corresponding family of diffeomorphisms, then dzf% =Lx A= % =0

0= —ﬁxg/\ = —(dixg)\ ‘l—Zng)\) = —ng +@'X5w

where He = ix,A. Thus H is a Hamiltonian for the symplectic vector-field X¢, and G is weakly Hamilto-
nian. To show that it is in fact strongly Hamiltonian, we see that:

H[ﬁﬂ?] = iX[&,n])\ = i[Xg,Xn])\ = /CXU(Z.Xg)\) = andHf = {Hg, Hﬁ}

Exercise 5.15 Show that when G is abelian the orbits of a weakly Hamiltonian action of G on M are
always isotropic submanifolds of M, i.e w(X¢, X)) = 0 for all {,n € g. Give an example to show that this
is not always true for symplectic actions of abelian groups.

Solution 5.15 If we do not make any compactness assumptions this is false: we can, for instance, take
the action R? ~ R? given by (1, y1, T2, y2) — (21 + a,y1 + b, T2, y2). This is clearly a Hamiltonian action
given by the Hamiltonians F'(z,y) = —z; and G(x,y) = y1, but the group orbit is the symplectically
embedded R? x 0 C R*.

Thus we assume that M is compact. Assume G is abelian, and that we have a weakly Hamiltonian
action G ~ (M,w). Choose a map g — C°°(M) given by & +— He so that Xy, = X for all { € g. Since
g is abelian, we have [¢,n] = 0 for any &, € g, and thus H,) = 0 by linearity. Then by Lemma 5.14 we
have, at any point in M and for any pair £,7n € g:

{He, Hy} = 7(&,m) + Hie g = 7(€,m)

Now observe that, by compactness of M, there exists a p € M where dH, vanishes (i.e a critical point of
H¢). Thus dH¢(X,) = 0 at that point, and 7(£,n) = 0. Since 7(&,n) is independent of p, it follows that
7(§,m) =0 for any &,n € g. Thus {H¢, H,} = w(X¢, X,)) = 0 for any pair £, and in fact the G action is
Hamiltonian.

We can easily find a counter-example to this statement if we allow G ~ (M, w) to be only symplectic;
we need only take a quotient of the R? ~ R* example. We can take the torus action 7% ~ T* (with
T* imbued with the quotient symplectic structure given the standard map R* — R*/Z* = T?) given by
(x1,Y1, T2, y2) — (x1 + a,y1 + b, 2, y2). This action is not Hamitlonian since the 1-forms ig, w = dy; and
ig, w = —dxy are not exact. This action is symplectic and the orbit of (0,0,0,0) is {(a,b,0,0)|(a,b) € T*},
i.e the symplectically embedded torus 7% x 0 C T*.

Exercise 5.17 Prove that these definitions are consistent with the ones in Section 5.1 where G is the
circle group S*.
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Solution 5.17 In Section 5.1 the moment map of an S! action was just defined as the Hamiltonian H
corresponding to the vector-field %hzo with ¢ — ¢; the group map S' — Symp(M), with ¢; = 1. This
implies that %hzo = Xop; where 27mi € iR ~ u(1) is the generating element of the Lie algebra given by
differentiating ¢(t) = exp(2mit) at 0. Since u(1l) = span(27i), we can define a map p : M — u(1)* by
the formula (u(z),27i) = H and by demanding that the map be linear. Thus any Lie algebra element
¢ = 2mi) goes to He = AH. The resulting p is trivially a Lie algebra homomorphism because u(1) is
1-dimensional, thus all Lie brackets vanish, and since all H, are multiples of H, all Poisson brackets vanish
as well. This confirms that the terminology is consistent: all of the data of the “moment map” is carried
by the Hamiltonian of 27s.

Exercise 5.19 There is a natural double cover SU(2) — SO(3). To see this identify SU(2) with the
unit quaternions S* C R* ~ H via the map S® — SU(2) defined by:

U To+iry  xp+ i3
xr T . .
—X9 + 123 Tg— 17

Now the unit quaternions act on the imaginary quaternions by conjugation and the map 5% — SO(3) :
xr — @, is defined by:

q(®.€) = q(x)g(£)g(x)
where q(x) = x¢ + ix1 + jxo + kxs and q(&) = i€y + j& + ks for x € S3 an € € R3.

(i) Prove that the map SU(2) — SO(3) : U, — @, is a group homomorphism and a double cover. (ii)
Prove that the differential of the group homomorphism U, — ®, is the map su(2) — so(3) : ug — Ag

where:
1 ( i1 §2 +163 )
2\ —&+i& —iG

for £ € R3. Prove directly that the map ue — A¢ is a Lie algebra homomorphism and identifies the two
invariant inner products.

Ufz

Solution 5.19 (i) First observe that the map £ — Ug extends to the entire quaternion algebra H, giving
an algebra embedding U : H — End(C?). This map is given by:

1HU1:((1)(1)) iHUi:(é EZ> j»—>Uj:<_01 é) kHUk:(?é>

Notice that the U;, U;, Uy form a basis of the anti-Hermitian operators, i.e the M such that M1 = —M.
Furthermore, Uz = Ug , as this is true if it is true for 1,4, 5,k and it is easily checkable on the matrices
above. This the action of SU(2) on the imaginary quaternions can be written in terms of the Ug as:

®,Us = Up,e = U,UeUJ
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To check that this is a well-defined action, we need to check that the resulting matrix is in the image of
the imaginary quaternions, i.e that the resulting matrix is anti-Hermitian. But:

(UUUNT = (U;)TUgUmT = —U,UU,

So this is true. To see that the map ®, is in SO(3), we observe that the inner product on R* = Im(H) can
be written (£,7) = 3tr(UeU)). This can easily be checked: Uy = U,U = UU! = UjUjT = U,U!, so these
are all norm 1 vectors and the pair-wise products are all traceless. Thus (£, 7n) and %tr(U TU) agree on a
basis. So they are the same. To see that the map is a group homomorphis, we just see that:

®,,Ue = Uy Ue(Uyy)' = U, U, U (U,U,)' = U, U,UUIUS = &,9,U¢

To see that this is a double cover, we just need to check that the kernel of the map ® : SU(2) — SO(3)
given by x — @, is {£1}. Then we know that d®, has 0-dimensional kernel (since if the kernel of d®y is the
tangent space of the kernel of ® at 0) and thus by dimension counting (since dim(su(2)) = dim(so(2)) = 3),
d®, is bijective. Since ® is a group homomorphism, this implies d® is bijective everywhere. So & is a
covering map with fiber over any point isomorphic to the kernel, i.e {£1} (since ®(g) = P(¢') <=
®(g9') = (1) <= ¢ ==+g).

To check that the kernel if £1, we observe that U is in the kernel if and only if UU, = U,U¢ for
a € {i,j,k}. But we see that Us commutes with U; if and only if U; and U, are mutually diagonalizable,

a O
= o)

Since Ug is unitary, a is a root of unity. Furthermore, U;U; = U:U; implies that a = a. Thus a = £1 and

i.e if and only if U is diagonal. Then:

we must have Ug = £1. Since £1 are in the center of End(C?) and are unitary, they are both in the kernel
of ®. So they are equal to it.

(ii) Now we examine the map of Lie algebras. First note that if U, is a family of unitary matrices with
Up =1 and %|,_o = A € su(2) then, we have:

dU, AU’

d
— (UUeU)]1=0 = Ehoné + Ugd—ﬂtzo = AU + UA" = [A, U]

dt

Here A € su(2) is an anti-Hermitian matrix and so is U by the discussion in (i). Thus this is just the
adjoint action of the Lie algebra on itself! To check that this map is as claimed in (ii), we just need to
check on the basis i, j, k. We see that if £ = (a,b,c) then:

ia b+ ic
Ve= ( —b+ic —ia )

1 ) 0 b — ¢
é[UnUf] =1 ( ) = Usxe

Then:

ib+c 0
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—11a ic

[U Ue = < i? _-m):U@xs

%[U’“’Uf] =1 ( i<__j) —z'(a—b) > = Usxe

Thus we have checked that the map su(2) — so(3) is given by the map ue — A¢. To see that this is a Lie
algebra homomorphism, first recall that the cross product satisfies the Jacobi identity:

X (bxc)—bx(axc)=(axb)xc
Thus for two elements of su(2), ¢ and 7, we have:

[Ag, Aylv =& x (n x v) = x (§ x v) = (§ xn) X v = Agxyv

But we calculated above that [ug, u,| = %[Ug, U, = %Uﬁm = Ugxy. Thus the map ug — A¢ has the property
that [ue, u,] = uexy = Aexy = [Ae, A,]. Thus we have a Lie algebra homomorphism. The fact that it
preserves the inner product follows from our discussion above in (i) showing that 2tr(ueu)) = tr(UcUJ) =
(¢,n) and the fact that:

Str(4AT) = (€,1)

This can be seen by noting that tr(AB”) = 37, ~a;b; and thus (by examining the matrices directly)
observing that A;, A; and A; are an orthonormal basis under %tr(AgAg). Thus we have:

2hr(ugu}) = (€ n) = 5ir(AcA”)

So the two inner products are identified by ug — A.. But these are invariant inner products with respect
to the commutator, since:

2(tr([wy, ue|u ) + tr(ue g, uy) ")) = 21:1“(14,.@u§uj7 - unu,mj7 + uw,@ul — weu! T)

= 2tr(u,$u§u17 — unuKuj7 — uw%um + ’LL{U,{U;) = Qtr(uﬁu§u17 — unu,guJr — uﬁugﬂ + usuu ) =0

Here we use cyclicity of trace and the fact that u, = —ul. An identical manipulation shows that %tr(AgAg)
is invariant. Thus we have proven the last part of (ii).

Exercise 5.21 Show that the obvious action of U(n) on (CP"!, 7y) is Hamiltonian and find a formula
for its moment map.

Solution 5.21 It suffices to find a moment map CP™"~! — u(n)*. Then the fact that each of the vector-
fields X, is Hamiltonian will imply that U(n) is symplectic since for any g € U(n) with g = ¢g(1) (where
g(t) = exp(t&) for £ € u(n)) we have ¢;w = exp(§)*w and:

1
Pyw —w = /0 — Pypwdl = / PgryLxew =
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So that the representation U(n) — Diff(CP"™!) is symplectic.

izz*

- (Where we identify

To show that dH¢ = ix, Ty, observe the following. First, we can perform a unitary Change of basis to a

Now we claim that the moment map p : CP"! — u(n) is given by u([z]) =

2|z
u(n) and u(n)* by the invariant inner product), so that the Hamiltonian H is He([z

basis ey, . .., e, diagonalizing £, so that:
§= 2mihe;®@e; =) N
is the diagonal matrix with eigenvalues 27wi); for j € {0,...,n} and § = 2mie; ® €. In this basis the
Hamiltonian becomes: -
He([2]) = TE Do Ailaff =) N
i i
We will show that the Hamiltonians Hy, satisfy dH, = i ¢, 70 which will then imply that dHe = ix, 7o
by linearity. First consider . Observe that in the patch ( wy,) = 210 (21,...,2n) we have:
T
Hy, =———:; dH —_ dw; dw;
T T wp TR (1—|—|w| wa+ww

Furthermore in this patch the Fubini-Study form is given by:

1
To 2(1+ |w|2)2 27] (( |'I,U| ) J ww]) w w]

Finally, to find X¢, in this patch, we differentiate the action of exp(t§,). We see that this action is:

2mit

exp(t&o)[z0, - -y 2n) = [ 20, ..., 2] = exp(t&o)(wr, ..., wy,) = (e‘zm —2mit

wy,...,€ wy,)

d )
— Zfexp(tgo) (wr, . wa)limo = —2mi(wy, ..., w,)

dt[
Thus the vector-field is X¢, = —2mi Y w;0,,; in this patch. We then calculate that:

i

iXe,To = 2(1 + [w]?)? ;((1 + [w]?)dy; — wiw; ) (—2miw;dw; — 2miw;dw;)
(1+| DE] Z (1 + [w]*) (widi; + widw;) Z i Pty — 3 |y i)

W Z wzdwz + wzdwz dHfO

Thus we have proven that H¢, is a Hamiltonian for X, in the patch U, where 2y # 0. Since the patch
Uy is an affine open dense set, and both H,, X¢, and 7 are smooth, it must be the case that the formula
ix,,To = dH, holds over all of CP"!. Thus Hg, is a Hamiltonian for X¢,. By symmetry, we may conclude
the same for §; for j € {1,...,n} as well (in this case, we can use the analogous patches U; where z; # 0)
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and by linearity we can conclude that H, is a Hamiltonian for X,.

To conclude that x4 is a true moment map, we must verify that the map §& — H¢ is a Lie algebra
homomorphism. To check this, we consider the projection 7 : C* — 0 — CP"!. To calculate {H¢, H,} =
dH¢(X,;) and verify that it is equal to H ,, we can take a lift of X, through 7 (a X, vector-field on C* —
such that 7*X; = X¢ on CP"') and check that dH¢(X,) = Hj,; (where Hg, H, and Hp, are viewed
as functions on C" — 0 via their definition He(z) = n*He([2]) = %% We have a natural choice of X,
namely the differential of the linear action z — exp(t£)z on C". Thus we consider the vector-field Xg =&z,
and observe that:

dHe = 2| ‘4 ZM &ij(Zdz + 2dZ) — (2°€2) > Zidz; + %d7)

dHE(Xn) = §—| Z |Z| &ij (Zimjuzr + 2Min2) — (27€z) Zimikzk + 2Nk 2k)

0,5,k i,k
11 _ _ _ . _ _
= 5@(2 |2* (Ziigminzn + 2nliini) — (2°€2) Y Zimlinze — Zimin2e)
igk ik
i i (z7[§,m]2)
= 5_‘ Z |Z| Zzgzjn]kzk Zznngkzk)) 2 ’ZP - H[{Jﬂ

4,5,k

Exercise 5.23 Identify the tangent space T;,G with the Lie algebra g by means of left translation
g — 1,G : & — Lp&. Prove that the canonical 1-form M., on T*G is the pull-back under the above
diffeomorphism 7*G — G x g* of the form:

)\(h,n)(hga ﬁ) = <777 5)
(for g € G,€ € g and n,7) € g*) on G x g*. Prove the identity He = ix, A in the above example. Check

that the moment map satisfies (5.6).

Solution 5.23 Let the map ® : T*G — G x g* be given by ®(h,v*) = (h, L;v*). Then the differential
do : T(T*M) — T(G x g) is given by d®p,.«(&,n*) = (h, L*hv*, &, Lin* + dL*(&)v*). Here dL*(§)v* is
ad-hoc notation denoting the term in the differential of Ljv* contributed by the Lj part. The pullback of
the 1-form A is:

[CI)*A]/‘L,U* (57 T]*) = )‘h,LZ'U* (57 L;ﬂ?* + dLZ(f)U*) = <L2U*7 Lf:1§> = <U*7 LhL}:1§> = <U*7 é) = Acan,h,v* (5’ 77*)

This makes the check of the identity He = ix, A relatively easy. We have X¢(h,v*) = (—Lp&,n*(h,v*))
(i.e the G-component of the Hamiltonian vector-field on T*G agrees with the vector-field generating the
diffeomorphism ¢ : G — G). Thus we have:

ng)\can = q)*)\h,v*(_Lh€>77*(ha U*>> = _</U*7 Lh£>
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The moment map satisfying (5.6) follows immediately from the fact that the map 7"G — G x g* is a
bundle map which is equivariant with respect to the GG representations, and the fact that u clearly satisfies
(5.6) with respect to the action ¢, on G x g*. A more direct calculation is desirable though.

Exercise 5.25 Prove that the 2-form w on O by (5.7) is closed. Prove that X¢(n) = —ad(§)*n is the
Hamiltonian vector field generated by H¢(n) = (n,€). Prove that the action of G on O is Hamiltonian.

Solution 5.25 It suffices to prove that the 2-form 7, = (1, [, £]) is closed on g. Then since w, = (7,)|o,
and closedness is preserved by restriction, we will know that w, is closed. Now let n € O, and take three
tangent vectors ad(«)*n, ad(/5)*n, ad(x)*n at n. Then in local coordinates the gradient V7 is given by:

Vaa(wy=gTy(ad(@)™n, ad(8)™n) = (ad(x)"n, [a, B]) = (n, ad(k)[e, B]) = (0, [, [, B]])

Here we use the The exterior derivative is equal to the anti-symmetric form in ad(a)*n, ad(5)*n, ad(k)*n
achieved by anti-symmetrizing V7 in «, 5, k. Since the Lie bracket is already anti-symmetric, this is:

dry(ad(a)™n, ad(8)™n, ad(k)*n) = 2(n, [x, [, B]] + [B, [K, o] + [ev, [B, K]]) =

Here we apply the Jacobi identity.
Moving on, we show that X¢(n) = —ad(§)*n is generated by He(n) = (n,&). We calculate:
d[Hely(ad(a)™n) = (ad(c)™n, &) = (0, [, €]) = tad(e) nlad(e)nWn = ~iad()nlad(©)*n®n = Tad(a)*nl-ad(€)nWn

Thus H¢ is the Hamiltonian for X¢(n) = —ad(£)*n. The adjoint action of G on g*, n — Ad(g)*n, is
generated by ad : g — Vect(g*) given by £ — X = ad({)*n. Indeed, we have for all v € g:

(ad (€)' ¥) = (n,2d(E)) = {1, - (Ad(exp(tE))1) e

= 2 Ad(exp (1)) o = 5 (AA(ep()) "7, )l o = (55 (Ad(exD(t)n) 0. )

Thus, the generating vector-fields of the Ad action of G on O are the vector-fields X¢(n) = ad(§)*n and
they are Hamiltonian by our previous calculations. So Ad is weakly Hamiltonian. To show that it is
(strongly) Hamiltonian, we observe that:

H[a,ﬂ] (77) = <777 [CY»BD = Wn(_ad<04)*77> —ad(ﬁ)*n) = wn(XOcaXB) = {How HB}

Exercise 5.26 For every n € O there is a natural diffeomorphism:

G/G,~0 G, ={g€GlAd(g)"n=n}
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induced by the map g — Ad(¢g~')*n. The Lie algebra of G, is given by g, = {¢ = glad(¢)*n = 0}. Prove
that g, is the kernel of the skew form:

gxg—=R: (&) — (n[5¢])

Give a direct proof that this form determines a symplectic structure on G/G,,.

Solution 5.26 The first part is simple enough. We see that for a fixed n € O and £ € g we have:
n,[&¢&)=0forall e g < (ad(§)n, &) =0forall{ e g <= ad({)'n=0 < £ e g,

To prove that the above bilinear form induces a symplectic form on G/G,,, we argue as so. Define the
2-form w, for any g € G and L,§, L,¢' € T,G and £, & € g = T,G by:

wg(ngv ng,) = <7]7 [5’ g]) = <L;777 [L9£7 ng])

We observed that w,(Ls€, L,') = 0 for some € and all ¢ if and only if £ € g, i.e if and only if L,
is in the tangent space of the G, orbit of g. Furthermore, w, itself is G invariant in the sense that
Wing(Lr,g€, Liyg€') = Lg(Lg€, Le€'). Thus w, descends to a well-defined, non-degenerate 2-form on G/G,

via Wy ([Le€], [Le€']) = wy(Ly, Ly').

To show that @, is closed, it suffices to show that w, is closed. This is because if we consider the
quotient map ¢ : G — G/G,, the pullback map ¢* : Q*(G/G,) = Q*(G) is injective and dg*a = ¢*do for
any a € Q*(G/G,. Thus dw, = 0 if and only if ¢*d®, = dg*®, = dw, = 0.

To see that w, is closed, observe that:
dwg(Lga7 Lgﬁv Lg’y)

= dw(LyB, Lgy)|(Lga) + (=1)d[w(Lgar, Lyy)|(LyB) + dlw(Lger, LyB)|(Ly)
+(=Dwg([Lgav, LyBl, Lgk) + w([Lgav, Lyk], LgB) + (=L)w([LyB, Lgk], Lycr)

Here we are looking at Lo, L8, Lyy as vector-fields on G, and we are using a well-known invariant
formula for the exterior derivative. Note that the above formula would hold for any choice of X,, X3, X,
with X, (g) = L,a and similarly for 3, k, but our choice of X, = L, and so on makes things particularly
easy.

By dlw(L,f, Lyy)] we mean df where f is the function f = w(Ly3, Lyy). Then by df (X) we mean the
usual ixdf. The first thing to notice about the above calculation is that djw(Ly3, Lyv)] = d[(n, [3,7])] =0
because it is constant with respect to g. The same statement holds for the other 2 terms like this, so the
whole second line above vanishes. The second thing to note is that [L,a, L,5] = Lgle, f] (i.e the map
g — Vect(G) from the Lie algebra to the invariant vector-fields is a Lie algebra homomorphism). With
these two facts we may continue with only the third line, writing:

= wy(Ly[ar, B], Lyk) + w(Ly[a, K], LyB) + (—1)w(Ly[B, K], Lycr)
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= (0, =lle, B, 6] + llav, 6], B] = [18, 61, o) = (0, [[8, o, k] + [lev, 6], B] + [, 8], a]) = O
The last step is an application of the Jacobi identity.

Exercise 5.27 Show that the symplectic action of a connected semi-simple group is always Hamiltonian.

Solution 5.27 Let G be a semi-simple Lie group with a symplectic action ¢ : G x M — M on symplectic
manifold (M,w). Let the associated Lie algebra map g — Vect(M) be denoted by £ — Xe.

We begin by proving that this action is weakly Hamiltonian. Fix a £ € g. Since g is semi-simple, we
have { = [n, v] for some n,v € g (since g = [g, g]). Define the smooth function He as He = w(X,, X,).
Observe then that:

ix.w = ix, x,)w = Lx, (ix,w) = (dix, +ix,d)(ix,w)
== d(aniXUW) + anL’XVw == (.U(Xn, Xl,) == Hg

Here we use (in order) the Leibniz rule for the Lie derivative and the fact that Lx,w = 0, then Cartan’s
magic formula, then the fact that Lx, w = 0.

Thus we can choose a linear map g — C*°(M) given by £ — H¢ where H, is a Hamiltonian for X,
for all {&. By Lemma 5.14 we know that {H,, H,} — H,) = 7(§,n) where 7 is a 2-cocycle in the Lie
algebra chain groups composed of anti-symmetric 2-forms on g. By the hint (the vanishing of the second
Lie algebra cohomology H?(g)) we know that 7(£,71) = o([€,n]) is a coboundary. Thus we may redefine
€ — He to & = He+ 0(€) to get a map which yields a map of Lie algebras with C*(M) given a Lie
algebra structure via the Poisson bracket. The action is thus (strongly) Hamiltonian with moment map
p: M — g* defined by (u(p),§) = He.

Exercise 5.28 Suppose that G acts in a Hamiltonian way on the symplectic manifolds (M;,w,) for
j = 1,2 with moment maps p; : M; — g*. Prove that the obvious diagonal action G — Symp(M; x M)
is Hamiltonian with moment map u : My x My — g* given by u(p1,p2) = p1(p1) + pa(p2) for p; € M;.

Solution 5.28 Consider a § € g. Observe that the vector-field X, generating the diagonal action on
My x My splits as Xe(p1,p2) = X¢ (p1) + XZ(p2) € w1, My ® 75T, My = Ty, 1, (My X Ms). The sub-bundle
7T My, C T(M; x My) is the sub-bundle tangent to the M; X ps sub-manifolds and can be picked out as
the kernel of the projection map dmy : T'(M; X My) — T'M,. We can analogously define 737 M,. Likewise,
a splitting T*(M; @ My) = T*M; & T* M is induced by the splitting of the cotangent bundle. The vector-
field Xg1 is then defined as the unique vector-field in the sub-bundle 7, M; whose image dm (Xg) under
the bundle map dmy : 7T, M; — T'M, is the Hamiltonian vector-field on M; corresponding to §. This is
well-defined because the map dm; is an isomorphism on the fibers. We define X 52 analogously.

Thus, letting w = w; @ wy we have:

p1,p2

ixew = Mixpwi+myixaws = mid{p, §) +mad(pa, §) = d{mipm +75pe, &) € T My®T), My = T}, |, (My X M)

But [7fp1 + mipa|(p1,p2) = pa(p1) + pa(p2) = p(p1,p2). Thus this precisely says that He = (u,§) is a
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Hamiltonian for X,. A similar computation shows that we have a Lie algebra homomorphism, i.e:
(1, [&m]) = 71, &) + m3 (o, €) = 7 (wn (dm Xg , dm X)) + 73 (wa(dma XE, dma X7))
= (miwi)(X¢, X72) + (mowe) (XE, X72) = (mjwr + mywa)(X{ + XE, X, + X7) = w(Xe, X)) = {He, Hy}
Exercise 5.29 Use the previous exercise to calculate the moment map u, : C* — R"™ of the action of
the n-torus T" = R"/Z"™ on C™ given by:
(O1,...,00)  (21,...,20) = (7012, ... ™0z
If i : T — T" is a linear embedding and 7 : R® — RF is the dual projection show that:
[ = T 0 i, : C* — R”

is the moment map for the induced action of T*.

Solution 5.29 The moment map must be u(z) = —7(|21]? |22/%, ..., |24]?). To see this, consider any
0=(0,...,0,) €u(l)” ~R". We have the R action on C" generated by Xy, i.e the action ¢-(z1,...,2,) =
(e2mity) .. ¥ nly ). This is the “diagonal” R action on C" induced by the n R actions on C given by

t-z = e for j € {1,...,n}. By the previous result in the previous Exercise 5.28, the Hamiltonian for
this action is the sum of the Hamiltonians for each of the R actions pulled back along the n projection

2= =7 3 bl = (1.0)

Since our # was arbitrary, this shows that (u,#) is a Hamiltonian for all § € u(1)", and the action is
weakly Hamiltonian. Then the fact that U(1)" is abelian implies trivially that (u, [£,7]) = {{(1, &), (1, n)},
since everything commutes, so both expressions vanish. More directly, we see that any combination of
|z1]%, ..., |2n|* will be constant along U(1)™ orbits, so {X¢, X,,} = dH¢(X,)) = Lx, He = 0 for any &, 7, sicne
X, is an infinitesimal rotation of this form and H; is a combination of |z;|? terms.

maps. More simply:

To see that p, = 7 o j,, denote the Lie alegebras of T% and T™ as t* and t" respectively. Then
observe that the map t* — Vect(M) factors as t* — t" — Vect(M) where the first map is the map
dig : t* — t™ induced by the Jacobian of ¢ at 0. Thus ¢ — Xdio(¢)- In particular, the Hamiltonian is given
by He = Haige) = {11, dio€) = ((dig)* i, €). But since i is given as the quoitent of a linear map i : R* — R",
dip = i via the identifications R" ~ ToR™ ~ TyT" = t" (with the analogous identifcation for ]Rk). So
He = (i*p, &) = (mp, &) (since the dual projection 7 is precisely the adjoint of ¢ with respect to the dual
pairing on g* x g. Furthermore the fact that £ — (u, §) was a Lie algebra homomorphism ensures that the
same is true for £ — (mu, ), since in particular:

(mp, (€5 m]) = 0= {(u, dio§), {p, dion) } = {{mp, &), (mp,m)}
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Exercise 5.39 Use a construction similar to that in Example 5.38 to interpret the composition of sym-
plectomorphisms in terms of symplectic quotients.

Solution 5.39 Let M;,w;) for ¢ € {1,2,3} be 3 symplectic manifolds, ¢12 : M; — My and ¢o3 :
M, — Ms be two symplectomorphisms. Consider the manifold X = M; x My x M, x Ms with form
w1 X (—wy) X wy X (—ws). We have a coisotropic subspace C' = M; x A x M3 with isotropic leaves p x A x ¢
and a Lagrangian subspace L = I'j5 X I'y3, where the two components are the graphs of ¢15 and ¢93
respectively.

Let M be the symplectic quotient of C' by the foliation p x A x ¢. The map [p x A X ¢q] — (p,q) is
smooth, since it is induced by a smooth map M; x A x Ms — M; x M which is constant on leaves, and
its trivial to check that the map is in fact a symplectomorphism. Furthermore, the Lagrangian I'j5 X '3
intersects M; x A x Ms transversely.

To see that the intersection is good, look at a point z = (p,q,q,7) = (p, d12(p), P12(p), P23 (12(q)))-
Since dim(C) = 3n and dim(L) = 2n it suffices to show that 7,C' + T, L = T,X to show that the
intersection is transverse. But we see that the tangent vectors to T, C' at this point are all vectors of the
form u v P vdw € T, X. Meanwhile, tangent vectors to L are of the form a & Dp1oa B b P Dpy3b. But
here we can pick b to be anything and a to be 0. Thus for any a b ® c® d € T X we have:

a@b@c@d:[a@b@b@(d—qugg(C—b))]‘l‘[O@O@@(C—b)@(Dng(C—b))]ETxC@TzL

Thus the intersection is transverse. It is clear that for a fixed p and ¢, the leaf p x A X ¢ intersects L
at most at one point, in which case that point is p X ¢12(p) X ¢12(p) X ¢23(¢12(q)). Thus the image under
the map C' — M of L N C is precisely I'y3, the graph of ¢o3 0 ¢15.

Exercise 5.42 Let p: M — g* be the moment map of a Hamiltonian group action and O C g* be a
coadjoint orbit. Prove that O contains a regular value of p if and only if every point in O is a regular
value of p. In view of (5.8) this is equivalent to the condition:

8" = TupO +{du(p)vlv € T,M}

For every p € ' (0O). But this means that p is transverse to O.

Solution 5.42 One direction of implication is trivial. Thus assume O contains a regular value, i.e a
point  where dpu, is full rank for all p with p(p) = 7. Then if n = Ad(¢~')*n. Then for any ¢ with

1(q) =1, the point p = 1,-1(q) satisfies 1i(q) = u(¥y(p)), so p € p~'(n), and 7" = Ad(g~")*u(p). Thus:
d[Ad(g_l)*]u(p) o dpy, = d(Ad(g_l)*Mp) = d(pothy(p)) = Aty (p) © Atgp = dpig 0 dipg,p

dpg = d[Ad(g™") ) 0 dpy 0 dity

Thus, since the rank of du, is maximal and the maps d[Ad(g~")*]u(), di,, are isomorphisms, we may
conclude that dpy, is of maximal rank.
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Exercise 5.43 Consider the obvious action of U(k) on the space C"** of complex n x k-matrices with
the standard symplectic structure. Identify the Lie algebra u(k) with its dual as above and prove that the
moment map of the action is given by:

1
B)= —B*B
u(B) 5

for B € C™*. Deduce that p~!(1/2i) is the space of unitary k-frames B € C"** with B*B = 1 and the
quotient:

po(1/2i)/U(k) = G(k,n)

is the Grassmanian.

Solution 5.43 Let zy with a € {1,...,n} and b € {1,...,k} be the complex coordinates on C"**.
Let A = (4;) € u(k) be an anti-Hermitian matrix, U(t) = e and Z = (z4) € C™*. Then X4(Z)
L(ZU(t))]i=o = ZA € C™*. If we denote the z,Z basis of the tangents space as 9.,,,0:,, = Ou,
coordinates we thus have:

S

a

XA(Z) = Z(Z ZacAcb)aab + (Z Eaclecb)a%

a,b c c

Thus we must find a Hamiltonian H 4 with Hamiltonian vector-field equal to this. The standard form is:

{ _
w= 5 Zbdzab A dZg

Thus we have:

. ) B I ) _ R
Ix, W= 5 Z(ZacAcb)dzab - (ZacAcb)dzab = 5 Z(zacAcb)dzab - (ZabAbc)dzac

a,b,c a,b,c

- 5 Z(ZacAcb>dzab - (zabA:b)dzac — 5 Z(zacAcb)dzab + (ZabAcb)dZac =d (5 Z ZacAcbZab)>

a,b,c a,b,c a,b,c

‘ ] | L.
= d(Etr(ZAZ ) = d(tr(Q—Z,Z ZAY)) = d<2_z'Z Z,A)
Observe above that we use the fact that YT = —Y and the fact that the invariant inner product is given
by (A, B) = tr(AB*) . Thus we may define y : C* — u(k) by u(B) = 5, B*B and (u(B), A) = Hy is
a Hamiltonian for X 4. It remains to check that this moment map induces a Lie algebra homomorphism.
But we see that:

{Hx, HY} - dHX<XY) - (% Z(zacch)dgab - (Zacch)dzab)(Z(Z ZadYde)aoLb + (Z Zadeb)a%)

a,b,c a,b d d

1 I S ) R -
= 5 E ZacchZad}/;lb - ZacchZad}/;lb = 5 E ZabXchad}/;lc - ZadXchabYE)c
a,b,c,d a,b,c,d

i * * 13 1 =
= 5 Z Zab[Xch;;d - Y})cXcd]Zad = Z 2_Z.Zab[Xch;:d - YEJcXcd]Zad = H[X,Y]
a,b,c,d a,b,c,d
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Thus we have that p~'(1/2i) is the space of unitary frames, since it is exactly the matrices such that
B*B = 1. Thus p!(1/2i)/U(n) = {unitaryk — frames}/U(n), which is one of the homogeneous space
realtization of Gr(n, k,C).

Exercise 5.44 (Toric Manifolds) Consider the action of the k-torus T* on C" which is induced by the
inclusion T — T" as in Exercise 5.29. A symplectic manifold is said to be toric if it is a symplectic
quotient My formed from this action, where @ C R" s a coadjoint orbit of T*. Of course, since T* is
abelian, O is simply a point. Show that any product of the form:

(M,w) = (S* x -+ x S? Ao X -+ X \po)

is toric, where o is an area from on S? and \; > 0. More generally, any product of projective spaces is
toric. Show that any symplectic toric manifold of dimension 2m supports a Hamiltonian action of the
torus T™ and calculate its moment map.

Solution 5.44 To see that the M above is toric, consider the standard T?" = T" x T™ action on
C" x C"™ with coordinates 21, ..., zn, W1, ..., w,, and consider the diagonal embedding T™ — T?" given by
g +— g X g. Then this T" action is just the product of the diagonal T' actions on the (z;,w;)-planes and
thus the moment map is simply:

(21, 2y Wi, o wy) > =1 (|21 2 4 Jwi]?, |22)? + [wal, .. |2af® 4 |wa|?) € R™ = t"

i.e the product of the moment maps of the individual T' actions. Now consider the point A = —m -
(A1,...,An) € t" and Then:

O = p ) X pp T (Ne) X X T () = A0S? X XeS? x - x A, 8P

Here \;S? is the radius )\31./2 sphere in the (z;,w;)-plane in C" x C".
Now observe that wp|y,s3 = A;j7*7g|5, 53 Where 7 is the standard Fubini-Study form on CP' = S* and

7 : C?—0 — CP" is the quotient map (x1, z2) — [z1, Zo]. In fact we see that, considering the (z;, w;)-plane
as C? and looking at 7 : C*> — CP! we have:

?

71
)
2(]25 + w;[?)?
Restricted to )\jS?’ we have:

(5]'2]'de A\ de + U_JijdU)j A\ de -+ ijdej A\ dU_Jj + u_)jwjdwj A dU_Jj)

l

(de A de + dU)j A d’U_)J)
2\,

*
T 7'0‘53 =

i
— vz Bz A dzj + wyzdw; A dZ; + Zwdz A di; + wjwdw; A diy)
J
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And the same calculation as in Solution 5.3 shows that the latter part vanishes identically on \;S?, so:

J) 1
7T*7'0|)\.53 = —E(de AN dgj + dwj VAN dU_JJ) = _w0|)\-S3
N2 PV

J

In particular, if we take the group quotient X\;S%/U(1) = 7(\;S®) = CP! then the equivariant 2-form
wo »,53 descends to the 2-form \;79. In other words:

(5 (N) /T wo/TY) =~ (X;8° /U (1), Aj7o)

Thus we have:
)T = G (s (M) /T wo /T ~ (CPY, Njmo) = (M, w)

and we have realized (M,w) as a toric manifold.

To see the next part, consider a linear torus embedding T¥ — T™, the dual projection 7 : R* — R*
and an arbitrary p € R*. Let M = C"//T* = [ru]~'(p)/T* be the toric manifold associated to this data.
Assuming that p is a regular value, we know that the dimension of 2n — 2k = 2(n — k) =: 2m.

Now observe that M inherits a symplectic action of T™ = T"/T* defined for [g] € T"/T* and [z] €
]~ (p) as:
9] - [2] = [ga]

We verify that this is well-defined. First observe that if z € [ru]™'(p) then g € [ru]™'(p) since u(p) = u(gp)
and thus 7wu(p) = mu(gp). Thus we must show that our choice of x and g doesn’t matter. To see this,
observe that if [h] = [g] so that g = fh for f € T*, then gz and hz differ by multiplication by f, and thus
[gz] = [hz]. Likewise if [z] = [y] so that x = fy for f € T* then gx = fgy so [gx] = [gy]. Thus the action
T™ on M is well-defined.

The fact that this action is symplectic follows from the fact that wlj,-1(,) is equivariant under the full

p)
T" action. Indeed, if we denote the quotient symplectic form as @, and let [v], [w] € TiyM for [¢] € M

then d[g]i[v] = [dgyv], so:
9] @y ([v]; [w]) = @igp (dlglig[v], dlgligw]) = wep(dgev, dggw) = wy(v, w) = wp([v], [w])
Now we argue that this action is Hamiltonian. Given { € t" let X, be the symplectic vector-field

generating the infinitesimal action on C. Then observe that g, X, = X ¢ since (COMING BACK TO
THIS ONE).

Exercise 5.45 Examine the manifold My = ~1(0)/G in the case where M = T*G ~ G x g* with the
action in Exercise 5.22.

Solution 5.45 Consider M = G x g* with the G action g- (h,£) = (hg™!, Ad(g~")*¢). The moment map
G x g* — g* was observed in Exercise 5.22 and the associated example to be given by u(h,§&) = —€.
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Thus, if O = O(=£) is an orbit in g* under the adjoint action g -n = Ad(g~!)*n of —£ € O then:
pH(0) = {(h.n)ln = Ad(g7")"¢} = G x O(¢)
Now consider the map @ : = (0)/G — G/Stab(€) given by:
[h,m) = [hg™"] € G/Stab(€) with g s.t Ad(g™")"n = ¢

We claim that this is a homeomorphism (probably a diffeomorphism as well). We show that it is well
defined and a bijection. First, suppose that (a,n) = g - (b,v) = (bg~!,Ad(¢g~1)*r) and suppose that
e (a,n) = (ae™1,&) and f - (b,v) = (bf ', v). Then (e tgf)  (ac™t,&) = (bf1,€), so that ae~t and bf !
differ by an element of the stabilizer.

The map is obviously surjective, since [g,n] — [g]. Thus we show that the map is injective. If
®([a,n]) = ®([b,v]) then for some e, f € G and some h~! € Stab(¢) we have:

e (a,n) = (ac”!, Ad(e™")"n) = (c,£)

[ () = (bf LAY ) = (ch )
But this implies that (a,n) = e (c- (f - (b,v))) = (fce™) - (b,v) (note how we use that c is in the
stabilizer here so that Ad(c™1)*¢ = &), and thus that [b,7] = [a,v] € p=1(O)/G.
Continuity comes because the inverse of ® is given by [g] — [g,&]. This is continuous since it is induced
by the continuous map G' — =1 (0)/G given by g — [g,&] which is the composition of the embedding
G — puHO) given by g — (g,&) with the quotient map p~*(O) — p~H(O)/G. Since the maps that are

continuous G /Stab(¢) — u~1(0)/G are precisely those induced by continuous maps G — p~(0)/G which
are constant on Stab(€) orbits, this shows that the map ® is continuous.

Exercise 5.46 Suppose that G acts in a Hamiltonian way on a symplectic manifold (M, w) with moment
map p : M — g*. Consider the action of G on the product M’ = M x T*G with symplectic form
W' = W X Wean. By Exercise 5.28 this action is Hamiltonian. If we identify 7*G with G x g* as in Example
5.22 then the moment map is given by:

1 (p, h,m) = p(p) —n

for p e M,h € G and n € g*. Prove that the Marsden-Weinstein quotient can be identified with (M, w).

Solution 5.46 We see that [¢/]71(0) = {(p, h, u(p))|(p,h) € M x G} ~ M x G. Now we postulate the
map @ : [1/]71(0)/G — M given by:
P, g 1)) = g-p

We show that this map is a diffeomorphism. First note that ®(p, g, u(p)) =g-p=h-q= ®(q, h,u(q)) if
and only if:

(h™"g) - (p, g, 1(p) = (h""(9(p)). g(h""g) ", Ad((h""g) ") 1u(p)) = (g, h, u(h™"g(p))) = (q, h, 1))
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Thus if [p, g, u(p)] = (g, h, p(q)] € [']71(0)/G then @([p, g, 1u(p)]) = ®([q,h, u(q)]) (so @ is well-defined),
and conversely if ®([p, g, u(p)]) = ®([g, h, p(q)]) then [p, g, u(p)] = [g,h. p(q)] (so it is injective). It is
evidently surjective, since every point p € M is in the image of [p, 1, u(p)]. Thus @ is a bijection.

We can see it is a diffeomorphism by observing that the map @' : [1/]1(0) — M given by (p, g, u(p)) —
g - p is smooth (this is, in fact, equivalent to the smoothness of the representation map M x G — M).
Thus @ is smooth because it is induced by a smooth function on @ : [1/]7(0) which is constant on group
orbits. Conversely, ®~! is given by p — [p, 1, u(p)], and we can see that this map is smooth by noting that
it is the composition of the smooth map M — @ : [¢/]71(0) given by p — (p, 1, u(p)) with the smooth
quotient map @ : [p/]71(0) — @ : [1/]71(0)/G.

Finally we must show that ® is a symplectomorphism. Let us first examine Q = w X wWean on [p/]71(0).
The tangent space of a point (p, h,n) € [1/]71(0) is all the vectors v & a & £ € T,M & g & g* such that
dp,v = €. The tangent space to the group orbit is all vectors of the form X¢(p) & —h& @ ad(—=£)*n.

Now observe that d®,, (v & a & &) = dg,v + Xo(g9p) = dgyv + dg,Xo(p) € Ty, M. Thus:
Pwvdad,wdfdn) =wy(dgyw + dgyXa(p), dgyw + dgyX5(p))

= g'w(v+ Xa(p), w + Xp(p)) = w(v+ Xa(p), w + X5(p)) = w(v,w) + w(Xa(p), w) + w(v, X5(p))
= w(v,w) + dH,(w) — dHg(v) = w(v,w) + (dpy,w, o) — (duyv, 5)

But observe that if £ = dp,v and n = dp,w then:
Q<U Dad dﬂpU, w D 6 D d:U’Pw> = w(”a w) - <dlu’pvu 6> + <d:u’Pw> Oé)

so @ is a symplectomorphism.

Exercise 5.49 Consider the case of n = 2 in Example 5.48. Show that the inverse image of any vertex
P, in A is a single point, of any point o the edge is S!, and of any point in the interior is 72. What is the
inverse image of an edge? Of a line segment such that AB, AB’ as in Fig. 5.37 Of the triangle ABP,?

Solution 5.49 We recall that the moment map on CP? is:

\Z1’2 |Z2|2
M([Zo, 21, Z2]) = ﬂ'(_v _)
227 |2

The image of u is the set of points {(7z, 7y)|x +y < 1,2,y > 0}. There are 3 vertices, (,0), (0,7) and
(0,0). These correspond to points where |z;| = |z| for i =0, 1,2, i.e points of the form [z, 0,0], [0, z, 0] and
0,0, z]. Each of these represents a single point in projective space, so the inverse image is one point.

Now examine the points on a side, say where |23] = 0. The fiber of a point here has |z;| = 0 and
|20|% = a®|z|%, |21|* = b?|2|? for fixed a, b # 0 with a® + b* = 1. In particular, z; = ce??z, for some constant
c. Thus the points in the inverse image are:

20, ce™2,0] = [1, e 0]
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Every such point has a unique representative [1,ce?, 0] where the first coordinate is 1, so the image is
diffeomorphic to the circle {(1,¢%,0)|6 € R}. A nearly identical argument takes care of the other sides.
For a point in the interior, the condition is that none of the z; are zero and |z1| = alz|, |22| = b|z1]| for
non-zero a, b, so that (29, 21, 22) = (20, ae?zy, be’®z). Each such point has a unique representative with
20 = 1, so that the map [z, €29, be'®z] — (€, ') is a diffeomorphism to the flat Clifford torus in C2.

The inverse image of an entire edge (including the end-points) is a sphere. We can see this by noting
that the inverse image of the edge without the end-points is an open cylinder (being a circle bundle over a
line-segment, which is always trivial). The two ends of this cylinder are then each glued along the inverse
image of the two vertices at the end-points of the edge, which are points, so the inverse image of the closed
line-segment can be identied with S* x I/ ~ with the equivalence relation that identified the two circles
at either end-point with two points respectively. This is a sphere.

The inverse images of the sides AB, AB’ are diffeomorphic to S®, and the inverse image of the triangle
ABP, is 4-ball B*. The easiest way to argue this is to use projection 7 : R? — R onto the perpendicular
line to AB (resp. R*) and look at f = mopu : CP? — R. f is then Morse with critical points corresponding
to the vertices of u(CP?) on the interval f~1([f(P), f(A)]) with f~'(ABP,), and this interval contains
only one critical point which is the minimum at F,. Thus by standard Morse theory, we have that
I Yf(Ry), f(Py) + €]) =~ B* for all € such that there are no critical points in [f(F), f(Py) + €.

Appendix 1: De Rham Theory

Appendix 2: Tidbits Here I'm throwing some things that I proved that didn’t end up being useful for
the problem I was trying to do. Enjoy!

Lemma 3.14 (Parameterized Version) Let M be a 2n-dimensional smooth manifold and ¢, : Q —
M be an isotopy of a compact sub-manifold @ through M. Suppose that wy,w; € Q*(M) are closed 2-
forms that are equal and non-degenerate on T, M for any ¢ € ¥(I x Q). Then there exists smooth isotopies
iU — M (i = 0,1) for some U containing @ which is diffeomorphic to tubular neighborhoods of @
along with a family of diffeomorphisms ¢, : Uy — U; so that ¢*(v!)iw; = (¥9)*wo. Thus u is a multiple of
X n at p.

Thus suppose that u = aX}, and w = bX for some constants a, b at p.

Proof: Fix an extension of of ¢ to an isotopy ¢? : U — M for some U containing @) (we can do this
using the usual smooth isotopy extension theorem). Then we can use a version of Moser’s argument to

prove our result. It suffices to find a smooth family of 1-forms o, € Q'(U) such that (¢%)*c, = 0 and
dos = (¥9)*(w; — wp). Then we can consider the family of closed forms:

we,s = (19)*(wo + t(wr — wp)) = (¢9)*wo + tdo

Since (¢s)*wo = (¥s)*w; and thus (¥?)*(wp + t(w; — wp)) is non-degenerate all s,¢ and all p € @, we may
assume that w; 4 is symplectic on all of U for all ¢, s possibly after shrinking U. Then we may solve the
equation:

05+ ixt’swm =0
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for X; . The resulting family of vector fields is smooth and vanishes on () for all ¢,s. Now we can solve

the system of ODE:
d
Egbt,s = Xt,s o ¢t,s
Since X; s vanishes on () and () is compact, we pick a Uy such that this isotopy is well-defined for ¢,s € I
and p € Up. The resulting map is a smooth family of maps ¢ s : Uy — 11.s(Up) C U. The resulting family

of diffeomorphisms will satisfy:

d ., . d .
0= %gbt,swt,s = ¢t,s(%wt,s + dZXt,swtvs)

Picking some family of diffeomorphisms & : U — U so that & (¢ 5(Us)) = Up, setting ¢s = Epy s and
Pl =261 we have:
(st w1 = (P1,509) w1 = @] Wi = P wos = (Ug) wo

Thus we have found our desired family. m
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