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1 Introduction

These notes are intended to be a rapid primer on concepts and results in homology theory that are essential

for understanding manifold topology and, more specifically, symplectic topology. Homology theory is the

source of many of the most useful and easily computed manifold invariants, so it is very important to have

at least a working knowledge of it before beginning an in depth look at manifolds.

The essential idea of homology theory is, in broad strokes, the following. You want a way to tell two

spaces X and Y apart. The approach of algebraic topology to this problem is to devise a method or

procedure X  G(X) for taking any space X and acquiring an associated algebraic object G(X) (say, a

group, ring, vectorspace, module, algebra, etc, etc), so that one may compare G(X) and G(Y ) instead.

Ideally this method is amenable to computation, so that you can actually calculate G(X) completely given

some reasonable data about X. It is also usually crucial for this process X  G(X) to have the property

that, given a map f : X → Y , you can get a group map G(f) : G(X)→ G(Y ) (or perhaps in the opposite

direction). This way, one can do nice manipulations with G(X) and G(Y ) to divine things about the

relationship between X and Y .

Homology and cohomology theories are essentially procedures X  G(X) in this vein, which satisfy a

series of very nice axioms that particularly simplify things and make computation easier. It is difficult to

overstate their usefulness and centrality to modern differential topology.

In Section 2, we will give a definition for a homology theory via the Eilenberg-Steenrod axioms (ignoring,

for our purposes, extraordinary homology theories such as K-theory and embedded cobordism groups that

may not quite fit these criteria). In Section 3, we will outline the typical method of constructing a homology

theory and the results in homological algebra that make this possible. In Section 4, we will mention lots of

examples of homology theories and discuss in some detail the two most important examples for ur, cellular

homology and de Rham cohomology. In Section 5, we will mention some important additional properties

of homology on manifolds: fundamental classes and Poincare duality. In Section 6 we will perform some

example computations.

2 Eilenberg-Steenrod Axioms

We must start by recalling the definition of the category of pairs of topological spaces, which we will call

Top2. We will define homology groups as a collection of homotopy invariants for such pairs. The objects

of this category are pairs (X,A) of topological spaces with A ⊂ X. The morphisms are continuous maps

φ : X → Y between the first terms of pairs (X,A) and (Y,B) such that φ(A) ⊂ B. Note that the category

of topological spaces is a sub-category, consisting of the objects (X, ∅) and all the morphisms between any

two such pairs. We will often abbreviate the pair (X, ∅) simply as X.

Definition 2.1. Two morphisms f, g : (X,A) → (Y,B) are homotopic if there exists a continuous map

ft : [0, 1]×X → Y such that ft(A) ⊂ B for all t, f0 = f and f1 = g
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We can similarly define the category of pairs of compact manifolds Man2 and pairs of CW-complexes

CW2. The definitions of morphisms and homotopies there are exactly analogous.

Definition 2.2. (Eilenberg-Steenrod Axioms) Before we start getting into constructions and examples,

we’re going to provide a set of axioms

A homology theory is a collection of functors Hi : Top2→ Ab (one for each non-negative integer i)

along with a natural transformation ∂ : Hi(X,A) → Hi−1(A) (called the connecting homomorphism)

satisfying:

1. Homotopy If f, g : (X,A) → (Y,B) are two homotopic maps then the induced maps f∗, g∗ :

Hi(X,A)→ Hi(Y,B) are the same.1

2. Excision If U ⊂ X satisfies Ū ⊂ int(A) ⊂ X then the map i∗ : H i(X − U,A − U) → H i(X,A)

induced by the inclusion i : (X − U,X − U)→ (X,A) is an isomorphism.

3. Dimension If P is the 1 point space, then Hi(P ) = 0 for all i > 0.

4. Additivity If X = tαXα then Hi(X) ' ⊕Hi(Xα).

5. Exactness Each pair (X,A) induces a long exact sequence in homology, via the string of inclusions

(A, ∅) i−→ (X, ∅) j−→ (X,A):

. . .
j∗−→ Hi+1(X,A)

∂−→ Hi(A)
i∗−→ Hi(X)

j∗−→ Hi(X,A)
∂−→ Hi−1(A)

i∗−→ . . .

Note that the maps Hi(X,A)→ Hi+1(X,A) are given by ∂.

A cohomology theory is a collection of contravariant functors H i : Top2 → Ab along with a natural

transformation ∂ : H i(X,A)→ H i+1(A) (also called the connecting homomorphism) satisfying (1)-(5)

with all maps f∗ replaced with f ∗ 2 and all the arrows reversed.

We can also use the same definition for functors over CW2 and Man2. The above axioms are very

restrictive. In fact, one can prove the following result.

Theorem 2.1. If H i and H̃ i are two homology (resp. cohomology) theories satisfying the Eilenberg-

Steenrod axioms for the category Man2. Furthermore suppose that H0(P ) ' H̃0(P ). Then H i(X,A) '
H i(X,A).

For a manifold, then, any homology theory satisfying the Eilenberg-Steenrod axioms with H0(P ) ' R

can be denoted as H i(X;R) (without specifying its specific construction) and referred to somwhat un-

ambiguously as manifold homology or ordinary homology.

Remark 2.1. We will see later that, as disappointing as this result sounds, it is in fact very useful.

1It is convention to denote the morphism Hi(f) : Hi(X,A) → Hi(Y,B) induced by a morphism f : (X,A) → (Y,B) by
f∗, suppressing the dependence on i and alluding to the notation used for pushforward of vector-fields in manifold theory.

2As with homology, it is conventional to denote Hi(f) : Hi(Y )→ Hi(X) by f∗.

2



3 Constructing A Homology Theory

The above axioms don’t tell you how to find homology theories or how to calculate Hi(X). In applications,

homology is generally computed using instructions on how to define a chain complex Ci(X) from X, then

computing the homology of Ci(X). First let us define chain complexes and their homology.

Definition 3.1. A chain complex (C∗, ∂) of R-modules is a sequence of free R-modules Ci, called the

chain groups, along with a sequence of maps ∂i : Ci → Ci−1, called the chain differentials, such that

∂i ◦ ∂i+1 = 0. Usually the subscript i is suppressed in the notation for ∂i, and every ∂i is simply called ∂.

The chain groups now fit into a sequence:

. . .
∂−→ Ci

∂−→ Ci−1
∂−→ · · · → C1

∂−→ C0
∂−→ 0

A co-chain complex (C∗, δ) of R-modulules is a sequence of free R-modules Ci, called the co-chain

groups, along with a sequence of maps δi : Ci → Ci+1, called the chain co-differentials (or just the

chain differentials), such that δi+1 ◦ δi = 03 Again, the subscript is usually suppressed. The cochain

groups fit into their own sequence, with the arrows going in reverse.

Definition 3.2. The homology H∗(C∗, ∂) of a chain complex is defined as the sequence of groups

H i(C∗, ∂) defined as:

Hi(C∗, ∂) := ker(∂i)/im(∂i+1) =
ker(∂ : Ci → Ci−1)

im(∂ : Ci+1 → Ci)

Where A/B = A
B

here means quotient as R-modules. The cohomology H∗(C∗, δ) of a co-chain complex

is defined the same way:

H i(C∗, δ) := ker(δi)/im(δi−1)

Definition 3.3. A chain map F : C∗ → D∗ between two chain complexes (C∗, ∂
C) and (D∗, ∂

D) is a set

of linear maps Fi : Ci → Di such that ∂Di Fi = Fi∂
C
i (this is usually written as ∂F = F∂). Likewise, a

co-chain map F : C∗ → D∗ between two cochain complexes (C∗, δC) and (D∗, δD) is a set of linear maps

Fi : Ci → Di such that δDi Fi = Fiδ
C
i (again, usually written as Fδ = δF ).

Exercise 3.1. Show that a chain map F : C∗ → D∗ induces well-defined R-module maps [F ]i : Hi(C∗, ∂)→
Hi(D

∗, ∂) by using the quotient definition of homology.

Remark 3.1. If (C∗, ∂) is a chain complex, we may form the dual co-chain complex by defining

Ci = Hom(Ci, R) (where R is the base ring) and defining δ : Ci → Ci+1 by the identity:

〈δα, c〉 = 〈α, ∂c〉

for any α ∈ Ci and c ∈ Ci+1.

3It is convention to use subscript indices (i.e Hi, Ci) for homology groups and chain groups and super-script (i.e Hi, Ci)
for cohomology groups and cochain groups. Furthermore, it is convention to use ∂ for chain differentials and δ for cochain
differentials.
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Exercise 3.2. Verify that the dual co-chain complex defined above is in fact a co-chain complex. Show

that any chain map F : C∗ → D∗ induces a dual co-chain map F ∗ : C∗ → D∗.

Exercise 3.3. Let (C∗, ∂) be a chain complex and (C∗, δ) be its dual. Show that there is a well-defined

map:

φ : H i(C∗, δ)→ Hom(Hi(C∗, ∂), R)

given by:

〈φ([α]), [a]〉 = 〈α, a〉

Here [α] ∈ H i(C∗, δ) and [a] ∈ Hi(C∗, ∂). α ∈ Ci and a ∈ Ci are representatives of [α] and [a] respectively.

We will usually denote 〈φ([α]), [a]〉 as simply 〈[α], [a]〉.

A homology theory Hi will typically be defined by some instructions or rules dictating how to take a

space X and acquire a chain complex (C∗(X), ∂). We will denote such instructions abstractly by this silly

squiggly arrow X  (Ci(X), ∂), just so we have some way to refer to them. Then for a given space X, the

homology groups Hi for X are defined as Hi(X) = Hi(C∗(X), ∂).

Remark 3.2. The groups Ci(X) need not be unique for a given X: the instructions X  (Ci(X), ∂) may

dictate that some number of arbitrary choices must be made while creating Ci(X), and different choices

may result in different groups Ci(X). However, for a well-defined homology theory, two different chain

complexes C∗(X) and C ′∗(X) acquired via the instructions will produce naturally isomorphic homology, i.e

Hi(C∗(X), ∂) ' Hi(C∗(X), ∂), so that the choices are not reflected in the groups Hi(X).

Remark 3.3. It is not a guarantee that any construction like this will satisfy the axioms given in Definition

2.2. These axioms often have to be verified when a new homology theory is formulated.

The takeaway of this discussion is the following. Whenever you are confronted with a new homology

theory for manifolds, there are 3 questions that you should immediately ask:

1. Chain Groups How do you define the chain groups?

2. Chain Differential How do you define the chain differentials?

3. Induced Maps (If it isn’t clear) Given f : X → Y , how do you define f∗? This information is

usually specified as a map on the chains f∗ : Ci(X)→ Ci(Y ) which descends to a well-defined map

f∗ : H i(X)→ H i(Y ) on the quotient.

4 Examples Of Homology Theories

In this section, we will discuss a series of homology theories that are isomorphic to manifold homology

Hi(X;R) or manifold cohomology H i(X;R) for a closed manifold X. We will only define the
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4.1 Singular Homology

Definition 4.1. The standard n-simplex ∆n is the convex hull in Rn of the 0 vector e0 and the unit

vectors en1 , . . . , e
n
n in Rn. That is, it is all points in Rn of the form:

p =
n∑
i=0

xie
n
i with

∑
i

xi = 1

There are n+ 1 natural inclusions χnk : ∆n → ∆n+1 corresponding to the n+ 1 faces of ∆n. These are

given by:

χnk(p) = χnk(
n∑
i=0

xie
n
i ) =

k−1∑
i=0

xie
n+1
i +

n∑
i=k+1

xi−1e
n+1
i

Definition 4.2. Given a Hausdorff space X, we denote by Map(∆k, X) the set of continuous maps from

∆k → X.

The singular homology groups Hi(X;R) = Hi,sing(X;R) := Hi(C
∗(X;R), ∂) are defined by:

1. Chain Groups The chain group Ci(X;R) is the freeR-module generated by the maps in Map(∆k, X).

That is, the chain group is the set of all formal sums:

φ =
k∑

α=0

rαφα with φα ∈ Map(∆k, X) and rα ∈ R

Note that these groups are huuuge, since the space of generators is massive.

2. Chain Differential The chain differential ∂i : Ci(X;R) → Ci−1(X;R) is defined as so. Since

Ci+1(X,R) is generated by the maps φ ∈ Map(∆k+1, X), is suffices to specify ∂i+1(φ) for any such φ.

∂i+1(φ) =
n∑
i=0

(−1)iφ ◦ χi

3. Induced Maps Given a continuous map f : X → Y , we define f∗ : Ci(X;R) → Ci(Y ;R) as so.

Again, it suffices to define it on the generators φ ∈ Map(∆i, X). There we define it by the obvious

formula:

f∗φ = f ◦ φ ∈ Map(∆i, Y )

Note that it is obvious from this definition that ∂ and f∗ commute.

We can also define singular cohomology H i(X;R) = H i
sing(X;R) := H i(C∗(X,R), δ) as so. This uses

the construction in Remark 3.1, but just for clarity we will discuss it again in this context.

1. Co-chain Groups The chain group Ci(X;R) = Hom(Ci(X;R), R) is the space of linear maps

(module homomorphisms) to the base ring R.
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2. Co-chain Differential The differential is defined as the dual map induced by ∂. More specifically,

given a co-chain α ∈ Ci(X;R), we define the co-chain δα ∈ Ci+1(X;R) by its value on any c ∈
Ci+1(X;R):

〈δα, c〉 = 〈α, ∂c〉 for all c ∈ Ci+1(X;R)

Here 〈α, c〉 denotes the dual pairing of α with c.

3. Induced Maps Given a continuous map f : X → Y , we define f ∗ : Ci(Y ;R) → Ci(X;R) as the

dual map to f∗. As above, this means:

〈f ∗α, c〉 = 〈α, f∗c〉

In particular, if the chain c is a single map φ ∈ Map(∆i, X), then:

〈f ∗α, φ〉 = 〈α, f ◦ φ〉

Exercise 4.1. Verify Axiom 2.2.3 (Dimension) from Definition 2.2. That is, show that Hi,sing(P ;R) = 0

if i > 0 and H0,sing(P ;R) = R for a 1 point space P .

Exercise 4.2. Verify Axiom 2.2.4 (Additivity) from Definition 2.2.

4.2 Cellular Homology

Definition 4.3. Let X be a Hausdorff topological space. A cell map in X of dimension k is a map

φ : D̄k → X from the closed ball to X which is a homeomorphism on the interior of the ball. A closed

cell is an image of the boundary ∂Dk for some cell map. An open cell is the image of the interior Dk for

some cell map.

Definition 4.4. A cellular decomposition of a compact Hausdorff space X is a partition of X into

finitely many open cells with cell maps φkα : D̄k → X (where k denotes the dimension and α is simply some

index) that satisfies the following 2 properties. Let ckα := φkα(Dk), c̄kα := φkα(D̄k) and ∂ckα := φkα(∂Dk). Also

let Xk = ∪α,j≤kckα. The 2 properties are:

1. The boundary ∂ckα of each cell ckα is contained within Xk−1.

2. A subset K of X is closed if and only if K ∩ c̄kα is closed for all cells c̄kα.

The idea here is that a cellular decomposition of X is a set of instructions on how to build X out of

standard pieces, namely balls Dk in any dimension, by gluing these pieces together. Property 4.2.1 dictates

that the boundary of a piece of dimension k must be glued along the spaces of dimension k − 1 or lower.

Property 4.2.2 dictates that the topology of X is induced as the quotient topology of the cells glued along

these maps.

The cellular homology groups Hi(X;R) = Hi,CW(X;R) := Hi(C
∗(X;R), ∂) are defined by:

6



1. Chain Groups The chain group Ci(X;R) is the free R-module generated by the open cells ciα of

dimension i in any cellular decomposition of X. That is, the chain group is the set of all formal sums:

ci =
∑
α

riαc
i
α riα ∈ R

We find it helpful to imagine these chains as collections of k-dimensional sub-manifolds ciα sitting

inside of X, with little labels riα by elements of R indicating the multiplicity of each of the pieces. Note

that we must choose an arbitrary cell decomposition: it is a non-trivial result that the homology

will not depend on our choice.

2. Chain Differential The differential ∂i : Ci(X;R)→ Ci−1(X;R) is defined as so.

First, note that for any ciα, the quotient X i/(X i− ciα) is homeomorphic to Di/∂Di ' Si via the map

induced by φiα (call this induced map [φiα]). Thus for each ci+1
α and ciβ we have a map χβα : Si → Si

given as the composition of the string of maps:

Si ' ∂Di+1 φi+1
α−−→ Xi

q−→ Xi/(Xi − ciβ) ' ciβ/∂c
i
β

[φiβ ]
−1

−−−→ Di/∂Di ' Si

Recall that the degree deg(φ) of a map φ : Si → Si is the image of the homotopy class [φ] ∈ πi(Si)
under the isomorphism πi(S

i) ' Z where Id is send to 1. Intuitively, the degree deg(χβα) counts the

number of layers of the sphere ∂Di that the map φiα puts onto cell ci−1β .

The chain differential can now be defined by the following formula. Since Ci+1(X,R) is generated by

the cells ci+1
α , it suffices to specify ∂i+1(c

i+1
α ).

∂i+1(c
i+1
α ) =

∑
β

deg(χβα)ciβ

As with singular homology, this construction can be dualized to formulate a cellular cohomology

H i
CW (X;R) := H i(C∗(X;R), δ).

4.3 De Rham Cohomology

Let X be a compact smooth manifold. We can consider the bundles ΛkX = Λk(T ∗X), whose fiber ΛkXp

at each point p ∈ X is the space of anti-symmetric k-linear maps TpX × · · · × TpX → R from the tangent

space TpX at p to R, and consider the space of k-forms Ωk(X), i.e the space Ωk(X) = Γ(Λk(X)) of smooth

sections of Λk(X). Recall that there is a natural map d : Ωk(X)→ Ωk+1(X) called the exterior derivative

given in coordinates by:

dω =
∑
I

df ∧ dxI if ω =
∑
I

fdxI

Here x1, . . . , xn are coordinates in a patch, dxi are the 1-forms given by the differential of the coordinate

functions, and df =
∑

i ∂ifdxi is the differential of f . Also:

dxI = dxi1 ∧ dxi2 ∧ · · · ∧ dxik with 1 ≤ i1 ≤ · · · ≤ ik ≤ n
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The De Rham cohomology groups H i
dR(X) := H i(C∗(X;R), δ) are defined by:

1. Chain Groups The co-chain group Ci(X;R) is the space of i-forms Ωi(X).

2. Chain Differential The co-chain differential is δi : Ci(X;R)→ Ci+1(X;R) is given by the exterior

derivative d : Ωi(X)→ Ωi+1(X).

3. Induced Maps Given a smooth map f : X → Y , the induced co-chain map f ∗ : Ωi(Y ) = Ci(Y ;R)→
Ci(Y ;R) = Ωi(X) is given by pullback.

Exercise 4.3. Show that the wedge product descends to a product on cohomology. That is, show that if

[α] ∈ H i
dR(X) and [β] ∈ Hj

dR(X), and α, β are their representative i and j forms, then [α] ∧ [β] := [α ∧ β]

is a well-defined cohomology class, not depending on our choice of α and β representing [α] and [β].

5 Additional Properties

In this section we will discuss various important additional properties of homology theories that are not

evident from the axioms.

5.1 Important Identities

Theorem 5.1. Universal Coefficients Let X be a topological space and R be any ring. Then there is

a short exact sequence:

0→ Hi(X;Z)⊗R→ Hi(X;R)→ Tor(Hi−1(X;Z), R)→ 0

In particular, Tor(Hi−1(X;Z),R) = 0 so that:

Hi(X;R) ' Hi(X;Z)⊗ R

Theorem 5.2. Künneth Formula Let X, Y be two topological spaces and F a field. Then:

Hk(X × Y ;F ) '
⊕
i+j=k

Hi(X;F )⊗Hj(Y ;F )

5.2 Fundamental Class, Intersection Pairing & Poincare Duality

The intersection product is an extremely important structure on homology, since it transforms some ques-

tions in the intersection theory of manifolds into algebraic problems in homology.

Proposition 5.1. Let Y be a closed (compact, boundary-less) oriented manifold of dimension n. Then

Hn(Y ;Z) ' Z and their is a canonical generator [Y ] determined by the orientation.
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Definition 5.1. The generator [Y ] ∈ Hn(Y ;Z) of Y above is called the fundamental class of Y . If

i : Y → X is an embedding of Y into X, then the push-forward i∗[Y ] ∈ Hn(X;Z) is also often referred to

as the fundamental class of Y .

Proposition 5.2. Every homology class a ∈ Hi(X;Z) has a = i∗[Y ] for some oriented Y and some

embedding i : Y → X.

Definition 5.2. We define the intersection pairing H∗(X;Z)⊗H∗(X;Z)→ H∗(X;Z), usually written

as a ⊗ b 7→ a · b or a ⊗ b 7→ a ∩ b, as so. For any a ∈ Hi(X;Z) and b ∈ Hj(X;Z), let Y and Z be closed

oriented manifolds of dimension i and j respectively with

Theorem 5.3. Poincare Duality Let X be a closed oriented manifold with n = dim(X). Then exists

an isomorphism:

PD : Hi(X;Z) ' Hn−i(X;Z)

and its inverse (which we will also call PD) satisfying the following property:

PD(α) · b = 〈α, b〉 for all α ∈ H i(X;Z), β ∈ Hi(X;Z)

Remember that 〈α, b〉 denotes the dual pairing of α and b using the map φ discussed in Exercise 3.3.
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