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1 Introduction

Symplectic geometry is a large and growing field of modern mathematics. Its origins
lie in classical physics, but the modern subject has connections to many seemingly
disparate areas: complex algebraic geometry, dynamical systems, partial differential
equations, particle physics and string theory, to name only a few.

In this introductory part of the notes, we will motivate symplectic geometry
from the perspective of classical physics. We will then explain (in broad strokes)
the connections to other areas. The most exciting part of the subject is that there
are many fascinating open questions, and with that in mind we will conclude the
section with a discussion of some such problems.

1.1 Newtonian Mechanics ⇒ Hamiltonian Mechanics

Our story begins with the basic equation of Newtonian physics.

~F (~x,
d~x

dt
) = m

d2~x

dt2
(1.1)

That is, force is equal to mass times acceleration. This is an equation for the
behavior of an n-dimensional particle (or n 1-dimensional particles, however you
like) evolving in time, which we model by a single position function ~x : R→ Rn.

Remark 1.1. Already this equation some content. For instance, why does the
equation not require higher derivatives? This is a consequence of the following basic
observation about the universe.

Observation 1.2. (Newton’s Principle Of Determinacy) The future behavior of a
closed physical system of particles is completely determined by the positions and
velocities of all of the particles in it, at any particular fixed time.

Our goal for most of the next page or so will be to run through the process of
reformulating Newton’s equations as Hamilton’s equations. To start in that direction,
we observe that Equation 1.1 is actually more general than necessary for many
systems. In many physical circumstances, we can simplify it as in the following
ways. First off, in many physical situations the force is independent of the
velocities of the particles involved. In other words, ~F is independent of d~x

dt
as a

variable. Second, the force ~F (~x) is often conservative, meaning that the work
W (γ) needed to traverse a path γ : [0, T ] → Rn in the space of possible positions
is independent of the path: any two paths connecting the same two point x and y
produce the same work. This is equivalent to the formula W (γ) = 0 for all closed
paths γ, i.e:

W (γ) =

∫ T

0

~F (γ(t)) · d~γ
dt

(t) = 0 if γ(0) = γ(T )
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In turn, this is equivalent to ~F being curl free, ~∇× ~F = 0, which is itself equivalent
to ~F = −~∇U for a function U : Rn → R. U is called the potential energy.

Under these circumstances (examples of which will be provided shortly), we can
thus rewrite Newton’s Equation 1.1 as:

m
d2~x

dt2
= −~∇U(~x) (1.2)

This form may not seem much better, but we are half way towards deriving Hamil-
ton’s equations. A few more observations are in order. In our third simplification,
we can use separation of variables by setting ~p = md~x

dt
to transform our equation

into a 1st order system. This is a common technique for converting a higher order
ODE problem into something more soluble, and as we will see it will elucidate some
nice symmetries in the equations. Once this substitution is made, we get:

d~p

dt
= −~∇U(~x)

d~x

dt
=

~p

m
(1.3)

For our fourth and final observation we note that if we write the total energy

H(~x, ~p), the combination of the kinetic energy K(d~x
dt

) = m
2
|d~x
dt
|2 = |~p|2

2m
and the

potential energy U(~x), as:

H(~x, ~p) =
|~p|2

2m
+ U(~x)

then suddenly Equation 1.3 acquire a beautiful, symmetric form in terms of H.

d~p

dt
= −~∇xH

d~x

dt
= ~∇pH (1.4)

These are none other than Hamilton’s equations and the energy function is called
the Hamiltonian in this context. These equations represent the starting point for
symplectic geometry.

Remark 1.3. One interesting thing to note right off the bat is that these equations
make sense for any energy function H of position and momentum. That is, the
energy need not be of the form H(~x, ~p) = K(~p) +U(~x) where K is the usual kinetic
energy term and U is some potential term. Hamiltonian mechanics is thus, in some
sense, much more general than Newton’s mechanics à la Equation 1.2.

The main use of a reformulation like Equation 1.4 is that it leads to simple
proofs of known facts and hopefully proofs of new things that were previously un-
known. With this in mind, let us use Hamilton’s equations to prove something
about mechanics, namely the law of conservation of energy.

4



Proposition 1.4. (Conservation Of Energy) If ~x, ~p are the position and momentum
in a particle evolving according to Hamilton’s Equations 1.4, then:

d

dt
(H(~x(t), ~p(t))) = 0

Proof. It is a simple computation with the chain rule.

d

dt
(H(~x(t), ~p(t)) = ~∇xH(~x, ~p) · d~x

dt
+ ~∇pH(~x, ~p) · d~p

dt

= ~∇xH(~x, ~p) · −~∇pH(~x, ~p) + ~∇pH(~x, ~p) · ~∇xH(~x, ~p) = 0

Here we used Equation 1.4 to go from the first line to the second.

From this proof, we can extract even more nice properties. A function Q of po-
sition and momentum is called a conserved quantity for the system with energy
H if d

dt
(Q(~x(t), ~p(t)) = 0 whenever ~x and ~p are solutions to Equation 1.4 for the

given H. Conserved quantities that appear physics include linear momentum, an-
gular momentum, charge, and more exotic things such as the LRL vector in orbital
mechanics. There is a sense in which knowing enough about such quantities can
help you solve a physics system entirely. We shall learn more later.

As it turns out, there is a criterion for a function Q being a conserved quantity
that one can check using only the Hamiltonian. In other words, the Hamiltonian
formulation makes it easy to check if a given quantity is conserved.

Proposition 1.5. (Conserved Quantities And H) Q is a conserved quantity for the
energy function H if and only if:

~∇xQ(~x, ~p) · −~∇pH(~x, ~p) + ~∇pQ(~x, ~p) · ~∇xH(~x, ~p) (1.5)

is identically 0 as a function of ~x and ~p.

Proof. Exercise. It is an easy generalization of the calculation in Proposition 1.4.

A fancy and compact way of stating Proposition 1.5 uses the Poisson bracket.

Definition 1.6. The Poisson bracket of two functions F and G of position and
momentum is defined via Equation 1.5, as:

{F,G} := ~∇xF (~x, ~p) · ~∇pG(~x, ~p)− ~∇pF (~x, ~p) · ~∇xG(~x, ~p) (1.6)

With this notation, a quantity Q is conserved if and only if {Q,H} = 0.

This is only a taste of the rich structure hidden behind the superficial simplicity
of Equation 1.4. In the next section, we will delve into the geometry of the situation.
First, however, we provide the reader with some exercises.

5



Exercise 1.7. The spring Hamiltonian or 2-d harmonic oscillator Hamilto-
nian for a 2-dimensional spring of masses m and Hooke’s constants k is:

H(x1, x2, p1, p2) =
p2

1

2m
+

p2
2

2m
+
kx2

1

2
+
kx2

2

2

Show that the angular momentum L(~x, ~p) = p1x2 − p2x1 is a conserved quantity.

Exercise 1.8. Consider the n-d harmonic oscillator with masses m = (m1, . . . ,mn)
and Hooke’s constants k = (k1, . . . , kn). The Hamiltonian is a direct generalization
of the 2-d case:

H(~x, ~p) =
∑
i

p2
i

2mi

+
∑
i

kix
2
i

2

We say that a set of numbers r1, . . . , rn is rationally independent if there no rational
numbers q1, . . . , qn such that: ∑

i

qiri = 0

(a) Write down a formula for the solution x(t), p(t) for this system given any initial
conditions x0, p0.

(b) Show that if the ratios r1, . . . , rn given by ri = ki
mi

are rationally independent,
then there are precisely n simple periodic orbits of the system for fixed energy
E > 0. A simple periodic orbit is a solution γ : [0, T ] → Rn

x × Rn
p such that

γ(0) = γ(T ) and γ(s) 6= γ(t) for any (s, t) 6= (0, T ): so the map γ : [0, T ) →
Rn
x × Rn

p is injective.

Exercise 1.9. Consider a 1-dimensional system, one position variable x and one
momentum variable p, with energy function H.

(a) Assume that dH
dx

(x, p) = dH
dp

(x, p) = 0 for only finitely many, isolated position

and momentum values x and p, and that the level set H−1(c) of any c ∈ R
is connected. Show that in this situation, every conserved quantity Q of H is
given by Q = f ◦H for some function f : R→ R. You may assume that every
function is smooth.

(b) Give a counter-example if we assume that the level sets can be disconnected.

1.2 Hamiltonian Mechanics ⇒ Symplectic Geometry

The theory of Hamiltonian physics that we described above contains the basic in-
gredients of symplectic geometry. We will now point out those ingredients for the
reader.
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Notation 1.10. From here on out we drop the arrows in our vector notation, i.e.
denoting ~x simply as x. No need to baby the reader notationally!

Motivation 1.11. What would motivate us to look for geometric and topological
features of Hamiltonian mechanics in the first place? To start, most Hamiltonians
do not have solvable physics: that is, a typical Hamiltonian will yield equations that
don’t have an exact solution. Thus it behooves us to look for qualitative properties
of Hamiltonian systems, properties that we can understand without solving the
equations exactly. Geometry and topology are a good source of these qualities.

The first thing that we should do is nail down the kind of space that we’re talking
about when we say symplectic geometry.

Definition 1.12. 2n-dimensional phase space is the space R2n = Rn
x × Rn

p of all
positions and momenta of a particle in n-dimensional Euclidean space.

In and of itself, R2n is not symplectic: we must imbue it with some additional
structure and consider the space together with that structure. Technically speaking,
phase space is R2n plus this structure. We have not (yet) developed the language to
say what a symplectic structure should be, so let’s use this specialized definition.

Definition 1.13. The standard symplectic structure ω0 on Rn
x × Rn

p is the
bilinear form ω0 : (Rn

x × Rn
p )2 → R given by:

ω0(u, v) = 〈Ju, v〉 for all u, v ∈ Rn
x × Rn

p

Here 〈·, ·〉 is the standard inner product on R2n and J is the 2n× 2n block matrix
given (in terms of the n× n identity I) by:

J =

[
0 −I
I 0

]
Motivation 1.14. What is the relevance of J and ω0? Well, a slick way of writing
Hamilton’s equations is as so. Let H : Rn

x×Rn
p → R be an energy function, of x and

p. We write ∇xH and ∇pH for the vectors of x and p gradients. We can combine
them into a single gradient ∇H. It is easy to see that Equation 1.4 can be written
as so:

d

dt

[
x(t)
p(t)

]
=

[
0 I
−I 0

] [
∇xH(x(t), p(t))
∇pH(x(t), p(t))

]
= −J∇H(x(t), p(t))

Here the vector consisting of x and p is a block vector of two length n blocks and the
matrix is a square block matrix of 4 n × n blocks. We call the vector-field −J∇H
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the Hamiltonian vector-field of H and denote it by XH . A solution γ = (x, p) of
Hamilton’s equations satisfies:

dγ

dt
= XH ◦ γ

Furtherore XH(x, p) can be written entirely in terms of ω0 and ∇H(x, p) as the
unique vector satisfying:

〈∇H(x, p), v〉 = ω0(XH(x, p), v) for all v ∈ Rn
x × Rn

p

As we will see later, using ω0 instead of J is better because it’s easier to axiomatize
and generalize ω0 to spaces that are not phase space.

The last change of perspective that we should take is to stop thinking of solutions
to Hamilton’s equations seperately and start thinking of them together, as a single
flow of phase space. Namely, we define the Hamiltonian flow of H to be the
smooth map ΦH : Rn

x × Rn
p × R→ Rn

x × Rn
p given by:

ΦH
t (x0, p0) = (x(t), p(t)) (1.7)

Here γ = (x, p) solves Hamilton’s equations for the Hamiltonian H, with x(0) = x0

and p(0) = p0.

1.3 Some Cute Symplectic Geometry

Let us now briefly discuss some elementary ways in which Hamiltonian dynamics
are determined by the geometry of phase space.

Complex Hamilton’s Equations The first geometric aspect of Hamiltonian me-
chanics that we will discuss involves the complex number. Notice that we can iden-
tify Rn

x ×Rn
p with Cn via (x, p) 7→ x+ ip = z. Under this identification, the version

of Hamilton’s equation that uses J (as in the definition of ω0) can be written as so:

dz

dt
=
dx

dt
+ i

dp

dt
= −∇pH(z(t)) + i∇xH(z(t))

= −i(∇xH(z(t)) + i∇yH(z(t)) = −i∇H(z(t))

That is, dz
dt

= −i∇H(z(t)), where here we treat ∇H(z(t)) as a complex vector via
the identification Rn

x × Rn
p ' Cn as above. This intriguing version of Hamilton’s

equations suggests some relationship between the equations and complex analysis
or complex geometry. There is absolutely a deep relationship between the two,
although the details of this are a bit beyong us for now.
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Exercise 1.15. Identify Cn and Rn
x × Rn

p as in 1.3. Let H be a Hermitian n × n
matrix over C and consider the Hamiltonian function h : Rn

x ×Rn
p ' Cn → R given

by h(z) = 1
2
z†Hz = 1

2
z̄ ·Hz.

(a) Write down Hamilton’s equations for this Hamiltonian, using the complex
notation, in terms of H. This is called Schrodinger’s equation.

(b) Write down a closed form formula for the solution z(t) to Hamilton’s equations
in this context with arbitrary initial conditions z(0) = z0 = x0 + ip0.

(c) Show that the time evolution is unitary, i.e. it preserves the standard Hermi-
tian inner product on Cn, so that z̄(t)·w(t) is constant for any pair of solutions
z(t) and w(t).

Embedded Geometry Determines Dynamics Next, consider a Hamiltonian
H : Rn

x×Rn
p → R and a regular value c ∈ R of H. By definition, a regular value c

of H satisfies ∇H(x, p) 6= 0 for every (x, p) ∈ H−1(c). In this situation, the inverse
image Y := H−1(c) is a smooth hypersurface of Rn

x×Rn
p (due to the implicit function

theorem) and we call Y regular.
Note that by conservation of energy (see Proposition 1.4) the vector XH(x, p) at

any point (x, p) ∈ Y must be tangent to Y ; indeed, the tangent plane at (x, p) to
Y is exactly the set of vectors v that are perpendicular to ∇H(x, p), and the proof
of Proposition 1.4 showed that 〈∇H,XH〉 = 0. Furthermore, ∇H(x, p) satisfies the
equation:

∇H(x, p) = f(x, p)ν(x, p) for all (x, p) ∈ Y

Here ν(x, p) is the unit normal vector of Y at (x, p) and f : Y → R is some
non-vanishing function. This means, in particular, that we can write Hamilton’s
equations as:

dz

dt
= f(x, p)Jν(x, p)

The thing to note here is that the direction of the vector Jν(x, p) only depends on
Y and not on H. That is, given two functions H0 and H1 where Y = H−1

0 (c0) =
H−1

1 (c1) for regular values ci of Hi, the vectors J∇H0(x, p) and J∇H1(x, p) are
parallel for every (x, p) ∈ Y .

This implies that the many properties of the Hamiltonian dynamics happening
on Y are properties of the geometry of Y within Rn

x×Rn
p , and not of the Hamiltonians

giving rise to Y . Let us explore examples of such properties with an exercise.

Exercise 1.16. An orbit of a Hamiltonian H is a solution x(t), p(t) to Hamilton’s
equations that satisfy x(T ), p(T ) = x(0), p(0) for some T > 0. Use the discussion
above to establish that the orbits on Y of two choices of Hamiltonian H0 and H1
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(where Y is a regular level set of both) are in bijection: any orbit of H0 can be
reparameterized to an orbit of H1 and visa-versa.

This shows that properties like “how many orbits Y has” and “the set of orbits
dense in Y ” are only dependent on Y and how it sits inside of phase space, rather
than the Hamiltonian H per se.

1.4 Some Deep Symplectic Topology

Now we discuss a somewhat sophisticated result about Hamiltonian dynamics that
is secretly topological.

Suppose that we had a system composed of n wheels. Each wheel has an angular
position coordinate θi (with i ∈ {1, . . . , n}) and a corresponding (angular) momen-
tum coordinate ωi = Iiθ̇i. We can thing of each angular momentum coordinate as
being denumerated in radians and thus living in R/2πZ, the line modulo integer
multiples of 2π1 which is the same space as the circle S1. On the other hand, the ωi
coordinates are just numbers on the real line, roughly measuring the velocity that
the ith wheel it turning.

The space of all angular positions for this system is thus the product S1 × S1 ×
· · · × S1 of n circles, a space that we will call the n-dimensional torus T n. On
the other hand, the space of all momenta is just Rn, one line of possible angular
momenta ωi for each wheel. Thus when we are formulating Hamiltonian physics for
this system of n wheels, the “phase space” will be T nθ × Rn

ω.
Now let’s say that we were studying the dynamics of this system of wheels, with

some energy function H of the form:

H(θ, ω) =
∑
i

1

2Ii
ω2
i + U(θ)

We want to understand a basic question (which we will state soon) about this
system, specically about the dynamics of the set L of motionless points, which we
now define. The set of motionless points L ⊂ T nθ × Rn

ω is:

L := T nθ × {0} ⊂ T nθ × Rn
ω

That is, L is the set of points that have no momentum. Given a Hamiltonian H,
we denote by L(T ) the set of points:

L(T ) := {γ(T ) = (θ(T ), ω(T )) ∈ T nθ × Rn
ω|γ solves Hamilton’s equations for H}

The question that we want to understand now is the following.

1Note that R/2πZ is the quotient of R as a group by the subgroup 2πZ, not the quotient of R
by 2πZ as a topological space.
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Question 1.17. Given a time T and a potential function U , how many motionless
points (θ, 0) ∈ L are again motionless after evolving for time T under the Hamilto-
nian H? In other words, how many initially motionless (θ0, 0) are there such that
the Hamiltonian trajectory (θ(t), ω(t)) with (θ(0), ω(0)) = (θ0, 0) also has ω(T ) = 0?
Another rephrasing is: what is the size of the set:

L(0) ∩ L(T )?

As it turns out, there is a pretty interesting answer to this question.

Proposition 1.18. (Arnold Conjecture For Torus) If L ⊂ T nθ × Rn
ω is the set of

motionless points on the n-torus, T is any time and U is any potential function,
then:

|L(0) ∩ L(T )| ≥ n+ 1

Remark 1.19. Note that this result is completely false if we consider an arbitrary
ODE of the form:

dγ

dt
|s = Z ◦ γ

where Z is a vector-field on the space T nθ × Rn
ω.

Motivation 1.20. What could this possibly have to do with topology? The fact
that we are working over a space with interesting topology, namely T nθ × Rn

ω, is
effecting the dynamics of the system.

For the curious, we allude to the more general result that will come in §4. There,
T n will be replaced with an arbitrary space of positions L and the phase space
T nθ × Rn

ω will be replaced with the appropriate phase space of L, which will be
denoted by T ∗L. Then the analogous result says that:

|L(0) ∩ L(T )| ≥ cl(L)

Here L is the cup-length of the position space L, that is the minimum number k
such that there are cohomology classes u1, . . . , uk ∈ HdR(X) with u1 ∧ · · · ∧ uk 6= 0
. For the torus, we have cl(T n) = n+ 1.

We will give a more general statement elucidating this effect after discussing
homology theort.

1.5 Open Problems

In this last introductory section, I will state some (simplified versions of) open
problems in symplectic geometry and contact geometry. Hopefully these questions
will entice the reader with their apparent simplicity!

11



Conjecture 1.21. Suppose that H : Rn
x × Rn

p → R is a Hamiltonian and E is an
energy value such that the surface:

Y := H−1(E)

is smooth and that the sub-level set X = H−1((−∞, E]) is star-shaped. Star-shaped
means that there is a point p ∈ X such that every other point y ∈ Y is connected
to p by a line segment in X. It is known that, in this situation, there is always one
closed orbit of the Hamiltonian system on the surface of Y .

Conjecture: In the above situation, there are always n orbits on Y .

Question 1.22. Let X and Y be compact polytopes in R2n. By this we mean there
are matrices A and B and vectors a and b such that:

X = {x ∈ R2n|Ax ≤ a} Y = {y ∈ R2n|Bx ≤ b}

A time-dependent Hamiltonian H on R2n is a function H : Rn
x × Rn

p × R → R of
x, p variables and an additional time variable. Time-depedent Hamiltonians model
systems that are not closed, that is where there is an additional force outside of the
system acting on the internal components. The Hamiltonian vector-field XH is a
vector-field that depends on position, momentum and time and is given by:

XH
t := XHt = ∇x,pH(t, ·, ·)

That is, we fix a time and take the Hamiltonian vector-field at that fixed time. A
solution to the (time-dependent) Hamilton’s equations is then a curve γ : [0, T ] →
Rn
x × Rn

p such that:
dγ

dt
|t=s = XH

t ◦ γ(t)

We can interpret the solutions to this equation together as a map:

Φ : Rn
x × Rn

p × R→ Rn
x × Rn

p

defined just as in Equation 1.7.
Question: For a fixed X and Y , when is there a time-dependent Hamiltonian

such that ΦH
1 (X) ⊂ Y ? Is there a formula for such an H in terms of the matrices A

and B? Are there computable numerical invariants I1, . . . , Ik that can completely
answer this problem, in the sense that there is an H if and only if Ij(A) ≤ Ij(B)
for all j?
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2 Manifold Basics

In this section, we will provide a rapid overview of elementary manifold topology
and geometry. The goal is to provide intuition and understandable results quickly
and compactly for the reader. With that in mind, most proofs will be short and
every long, technical argument will be deferred to Appendix 5.1.

We begin in §2.1 by defining manifolds and giving some examples. In §2.2 we
discuss fiber bundles and vector-bundles. In §2.5 we discuss the extension of several
natural operations on vector spaces to vector bundles, such as tensor products and
dualization. In §2.5, we discuss the construction of the tangent bundle, cotangent
bundle, the exterior bundle etc. In §2.8 we discuss the exterior calculus, which is an
important set of operations on vector-fields and k-forms. In the last section, §??,
we will briefly discuss Lie groups and their actions on manifolds.

2.1 What Is A Manifold?

Manifolds are one of the central objects of study for topologists. They are among
the most popular and ubiquitous axiomatizations of the concept of a “shape” into
a mathematically useful form. The idea, as the reader has probably heard before,
is that a manifold is “locally Euclidean”, in a precise sense that allows the user to
do calculus in a coordinate free way.

Figure 1: Some popular examples of 2-dimensional manifolds: a torus, a Klein bottle
and a punctured genus 2 surface. Note that the torus is hollow.

For the remainder of this subsection, let X be a Hausdorff, second countable
topological space. These are technical hypotheses that we will not explore in depth.
We will now define manifolds with boundary.

Notation 2.1. (Upper Half-Space) For the remainder of these notes, we adopt the
following notation and conventions.
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The upper-half space Rn−1×R+ will be denoted by Rn
+. The topological bound-

ary of Rn
+ as a subset of Rn will be denoted by ∂Rn

+. The topological interior of Rn
+

will be denoted as the compliment Rn
+ \ ∂Rn

+.
A smooth function f : U → Rk from an open subset U ⊂ Rn

+ will, in these
notes, mean a function of the form f = g|U where V ⊂ Rn is an open subset with
U = V ∩ Rn

+ and g : V → Rk is a smooth function in the usual sense.

Definition 2.2. (Charts & Atlases) An chart (U,ϕ) on the space X is a pair of
an open subset U ⊆ X and a homeomorphism ϕ : U ' V ⊂ Rn

+ from U to an open
subset ϕ(U) of the upper half-space Rn

+.
An atlas A on X is a set of charts (U,ϕ) on X satisfying these properties.

(a) (Covering) The set of open sets occuring in charts of A is a cover of X.

(b) (Chart Compatibility) If (U,ϕ), (V, ψ) ∈ A are two charts, then the transition
function defined as:

ψ ◦ ϕ−1 : ϕ(U ∩ V ) ' ψ(U ∩ V )

is smooth as a map between open subsets of Rn
+.

An atlas A is maximal if it is not a proper subset of another atlas. A maximal
atlas on X will also be referred to as a smooth structure on X.

Definition 2.3. (Manifolds) A smooth manifold with boundary or is a Haus-
dorff, second countable topological space X and a smooth structure A on X.

A smooth manifold without boundary, or simply manifold, is a manifold
with boundary such that every chart (U,ϕ) in the atlas A is disjoint from the
boundary ∂Rn

+ of Rn
+, in the sense that ϕ(U) ∩ ∂Rn

+ is empty.

Definition 2.4. (Maps Of Manifolds I) Let M and N be manifolds with boundary.

(a) A (smooth) map f : X → Y is a function such that the map of charts:

ϕ ◦ f ◦ ψ−1 : ψ(U)→ ϕ(V )

is a smooth map between the open subsets ψ(U) ⊂ Rm and ϕ(V ) ⊂ Rn, for
any chart (U, ψ) on X and chart (V, ϕ) on Y .

(b) An isomorphism (or diffeomorphism) f : X → Y is a bijective smooth
map such that the inverse map f−1 : Y → X is also a smooth map.

Remark 2.5. A few remarks are in order about Definition 2.3.
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(a) Usually we will just use X to refer to the pair, omitting any notational ref-
erence to A. When we refer to a chart (U,ϕ) of X, we mean a chart in the
corresponding atlas.

(b) Any atlas B is contained in a unique maximal atlas B (a good Exercise). Thus
to specify a smooth structure, it suffices to specify a (not necessarily maximal)
atlas on X (although two atlases may specify the same smooth structure).

(c) There is a notion of manifold that drops the hypothesis on the transition maps,
so called topological manifolds. Most of the manifolds in these notes will be
smooth, however, and we will note when this isn’t the case.

(d) A single topological space X might carry multiple smooth structures. This is
not obvious! The first examples were constructed by Milnor [4], who found
multiple smooth structures on the 7 dimensional sphere.

A manifold with boundary comes (unsurprisingly) with a subset called the
boundary, which is itself a manifold without boundary.

Definition 2.6. (Boundary) Let X be a manifold with boundary. The boundary
∂X of X is the set of points x ∈ X with the following property: there exists a chart
(U,ϕ) on X such that ϕ(x) ∈ ∂Rn

+. The interior of X is the complement X \ ∂X.

Proposition 2.7. (Properties Of The Boundary) Let X and Y be a manifolds with
boundary and f : X → Y be a smoooth map.

(a) (Manifold Structure) ∂X has a natural atlas induced by the atlas A of X.
This atlas makes ∂X into a manifold without boundary.

(b) (Map Restriction) The map f |∂X : ∂X → Y is smooth. If f(X) ⊂ ∂Y then,
considered as a map to ∂Y , f : X → ∂Y is smooth.

(c) (Tubular Neighborhood) There exists an open neighborhood U ⊂ X of ∂X
and a diffeomorphism ϕ : ∂X × [0, 1) ' U such that ϕ|X×{0} is the identity.

Example 2.8. Let us mention several examples of manifolds. For some of these
spaces, we will not define the smooth structure now: rather, we will postpone the
construction of the smooth structure to a section where we have more machinery.

(a) (Euclidean Spaces) For any n, Rn has a natural smooth structure: an atlas is
given by the single chart (Rn, Id).

(b) (Spheres) For any n, the n-sphere Sn, defined as the set of points in Rn+1 that
are distance 1 from the origin, has a natural smooth structure.
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(c) (Varieties) More generally, if P (x) is a polynomial in (n+1) variables x0, . . . , xn
and R coefficients, then X := P−1(0) is a manifold as long as P satisfies:

P (x) = 0 =⇒ ∂iP (x) 6= 0 for some

(d) (Grassmanians) The space GrR(n, k) of all k-dimensional linear subspaces P of
n-space Rn can be given a natural manifold structure. These spaces are called
Grassmanians. One can also consider the complex Grassmanians GrC(n, k) of
all k-dimensional complex linear subspaces P of Cn. Grassmanians are very
elementary (but interesting) examples of so called moduli spaces, i.e. spaces
whose points are themselves spaces.

(e) (Projective Spaces) The spaces of lines GrR(n + 1, 1) and GrC(n + 1, 1) are
called real and complex projective space, respectively, and denoted by RP n

and CP n.

Exercises 2.9. Here are some basic exercises about manifolds.

(a) Define an atlas on the sphere Sn and verify the compatibility axiom.

(b) Define atlases on the quotient group R/Z2 and the projective space RP 1 of
lines in the real plane. Show that these spaces are diffeomorphic to S1.

(c) Suppose that X is a connected topological space and has a manifold structure.
The dimension dim(X) of X is defined as so: let (U,ϕ) be any chart, so that
ϕ(U) ⊂ Rn. Then dim(X) = n. Show that the dimension is well-defined.

(Hint: Reduce this to showing that you can’t have a smooth map ϕ : U ' V
with smooth inverse ϕ−1 : V ' U between open subsets U ⊂ Rm and V ⊂ Rn

for m 6= n. To prove this reduction, consider the rank of the total derivative).

(d) Brouwer proved the following result called Invariance of Domain: Suppose
that U ⊂ Rn is open and f : U → Rn is an injective continuous map. Then
V = f(U) is open and f is a homeomorphism between U and V .

Use this result to prove that a continuous bijective map of manifolds (without
boundary) has a continuous inverse. Thus we can define homeomorphisms of
manifolds as continuous bijective maps.

2By this we mean the space R, quotiented by the equivalence relation that x ∼ y if and only if
x − y ∈ Z. The topology is defined as so: a set U ⊂ R/Z is open if and only if the inverse image
π−1(U) is open, where π : R→ R/Z is the map taking a point to its equivalence class.

16



2.2 Fiber And Vector Bundles

Fiber bundles are spaces E that are “parameterized over a base” X. Another way
to think about them is that they are spaces that “almost split” into a product of
two spaces, except there is a topological twist that gets in the way3. Vector bundles
are special types of fiber bundles where the fibers are vector-spaces.

Figure 2: Two examples of fiber-bundles (with 2-point fiber) over the circle. A fiber
and the accompanying base point are highlighted in red in both examples.

Definition 2.10. (Fiber Bundles) Let X and F be a smooth manifolds with bound-
ary. A (smooth) fiber bundle E with base X and fiber F is a smooth manifold
with boundary E together with a projection map π : E → X such that:

(a) For every x ∈ X, there exists a neighborhood U of x and a diffeomorphism
φ : E|U ' U × F such that π|U = π1 ◦ φ.

The inverse image Ex := π−1(x) for x ∈ X is called the fiber at x.

Definition 2.11. (Vector Bundles) Let X be a smooth manifold with boundary
and let F be either R or C. A (smooth) vector bundle E with base space X and
fiber Fk is a fiber bundle such that:

(a) The fiber Ex of a point x ∈ X has a vector-space structure (i.e. addition and
scalar multiplication) over F.

(b) For every x ∈ X, there exists a neighborhood U of x and a diffeomorphism
φ : E|U ' U × Fk such that π|U = π1 ◦ φ and φ|Ex : Ex → {x} × Fk is linear.

The integer k is called the rank of E and is denoted rank(E).

3I’ve heard (althogh I can’t find a reference) that the historical Russian word for bundle trans-
lates literally as “twisted product.”
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Definition 2.12. (Maps Of Fiber Bundles) Let πA : A → X and πB : B → X be
fiber bundles with fibers F and G, respectively.

(a) A bundle map is a smooth map f : A → B and a smooth map f : X → Y
such that πB ◦ f = πA. This means that f preserves fibers, in the sense that
the fiber Ax of x ∈ X is sent to the fiber Bx by f .

(b) A bundle isomorphism is a bundle map f : A→ B that is a diffeomorphism.

(c) A trivialization of A is a bundle isomorphism f : A ' X×F . A bundle that
admits a trivialization is called trivializable or, colloquially, trivial.

(c) A section σ : X → A of A is a smooth map such that πA ◦ σ = Id. This
means that it takes a point x ∈ X to some point in the fiber Ax of x. Note
that every vector-bundle has a canonical section, the zero section, given by
σ(p) = 0p ∈ Ep where 0p is the 0 vector in Ep.

The space of all smooth sections of a bundle E is usually denoted by either
Γ(E), C∞(E), Γ(X;E) or C∞(X;E). If E is a vector bundle then this space
admits the structure of a topological vector-space.

If A and B are vector bundles, we additionally stipulate that:

(a) A bundle map must have fiber maps f |Ax : Ax → Bf(x) that are linear.

(b) A bundle isomorphism must be linear bundle map in the above sense.

Figure 3: This is a depiction of two bundle maps. In the leftward image, we have a
bundle isomorphism from the trivial bundle with fiber {1, 2} to itself. The red and
blue components on the far left are mapped right-wards to the component that is
glowing the corresponding color. In particular, the two components are swapped.
In the rightward image, we have a bundle map (which is not an isomorphism) from
the non-trivial {1, 2}-bundle to the trivial {1, 2}-bundle.
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Given a smooth map ϕ : X → Y , we can perform a sort of “base change”
operation that takes bundles of Y and turns them into bundles of X by “pulling
back.” We now describe this operation in detail.

Definition 2.13. (Pullback) Let ϕ : X → Y be a smooth map.

(a) (Pullback Bundle) The pullback bundle ϕ∗E associated to a bundle E over
Y is the bundle with total space:

ϕ∗E := {(x, v) ∈ X × E|v ∈ Eϕ(x)}

The projection π : ϕ∗B → X given by the composition ϕ∗B ⊂ X × B → X
of inclusion and projection to the first factor.

(b) (Pullback Bundle Map) The pullback bundle map ϕ∗f : ϕ∗D → ϕ∗E
associated to a bundle map f : D → E of bundles over Y is defined as:

ϕ∗f(x, v) = (x, f(v)) ∈ ϕ∗E ⊂ X × E

(c) (Pullback Section Map) The pullback section map Γ(ϕ) : Γ(E)→ Γ(ϕ∗E)
from sections of E to sections of ϕ∗E is defined so that the section σ maps to
the section of ϕ∗E given by:

Γ(ϕ)σ = (x, σ ◦ ϕ(x)) ∈ ϕ∗E ⊂ X × E

By abuse of notation, we will generally denote this section by σ ◦ ϕ.

Proposition 2.14. (Pullback Properties) The pullback operation ϕ∗ has the fol-
lowing properties.

(a) (Composition) If ϕ : X → Y and ψ : Y → Z are smooth maps, D and E are
vector-bundles on Z and f : D → E is a bundle map, then:

(ψ ◦ ϕ)∗D = ϕ∗(ψ∗D) (ψ ◦ ϕ)∗E = ϕ∗(ψ∗E)

(ψ ◦ ϕ)∗f = ϕ∗(ψ∗f)

(b) (Trivial Pullbacks) The pullback ϕ∗E of a trivial bundle E is trivial.

Example 2.15. Here are some examples of fiber bundles. Many more examples
will be discussed in the next section.

(a) (Trivial Example) If X and F are smooth manifolds, then πX : X × F → X
is a fiber bundle with projection πX : X × F → X given by projection to the
first factor.
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Figure 4: Here we are depicting a bundle pullback. Note that this is only a com-
pletely accurate picture when the pullback map ϕ is injective. On the right, we have
a blue trivial bundle B over a disk base D. On the bottom, there is a map of a red
curve C into the disk. The red region R within the blue bundle is the pullback as
it sits within B. The red region in the upper left is the total space of f ∗B itself.

(b) (Non-Trivial Bundles On Circle) Let X = S1 be the circle. By identifying S1

with the unit complex numbers, we have for each k ∈ Z+ a “k-fold covering
map”:

πk : S1 → S1 eiθ 7→ eikθ

Thus we can take Ek = S1 to get a fiber bundle πk : Ek → S1 for each k, with
fiber isomorphic to the finite set {1, . . . , k}.

(c) (Tautological Bundles On RP n) Consider projective space RP n, the space of
lines L in Rn+1. We can define vector bundle E → RP n with fiber R as a
subset of RP n × Rn+1 in the following way:

En := {(L, v) ∈ RP n × Rn+1|v ∈ L ⊂ Rn+1}

Projection is defined by composing the inclusion E ⊂ RP n × Rn+1 with pro-
jection to the first factor. Similarly, we can define a bundle U → RP n with
fiber {1, 2} of two points by setting:

Un := {(L, v) ∈ RP n × Rn+1|v ∈ L ⊂ RP n+1 and |v| = 1}

Exercises 2.16. Here are some exercises about bundles.

(a) Show that the bundles πk : Ek → S1 in Examples 2.15(b) are not trivial (i.e.,
not bundle isomorphic to the trivial bundle with the same fiber) when k > 1.
(Hint: Consider the topological properties of the total space Ek).
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(b) In Exercise 2.9(b), the reader was asked to construct a diffeomorphism ϕ :
RP 1 ' S1. Show that the bundle U1 → RP 1 given in Example 2.15(c) is
bundle isomorphic to the bundle π2 : ϕ∗E2 → RP 1 of E2 → S1 as defined in
Example 2.15(b).

(c) Show that the pullback of a trivial bundle is also trivial.

(d) Give an example of a non-trivial bundle E → Y and a map f : X → Y such
that f ∗E is trivial.

(e) Prove that the bundles Un → RP n are non-trivial. Hint: Show that there is
an inclusion ι : RP 1 → RP n and show that ι∗Un is non-trivial using (a).

(f) Explain why a rank 1 vector bundle is trivial if and only if it has a non-
vanishing section. Generalize this statement to bundles of higher rank and
prove the generalized statement.

2.3 Review Of Linear Algebra

Given a vector bundle E, one can construct many new bundles naturally associated
to E by applying linear algebraic constructions (which make sense on plain vector-
spaces) to vector bundles in a smooth and fiber-wise way. In this section, we will
review the linear algebra prerequisites that we will need for this discussion. This
material should be standard in an advanced linear algebra course.

The format of this section will be as so. We will review five constructions: direct
sums, tensor products, (spaces of) linear maps, dual spaces and exterior algebras.
For each concept, we will first review the definition and the key properties. We will
then provide some intuition about the construction and a picture.

Through out this section, let F be either R or C (although much of this material
will work for any ring R, where we replace vector-spaces with modules). Let U, V
and U ′, V ′ be F vector-spaces and let ϕ : U → U ′ and ψ : V → V ′ be a linear maps.

Review 2.17. (Direct Sum & Tensor Product) The direct sum U⊕V is the vector-
space of pairs u⊕ v equipped with term-wise addition and scalar multiplication:

u⊕ v + t⊕ w = (u+ t)⊕ (v + w)

c(u⊕ v) = (cu)⊕ (cv)

The maps ϕ and ψ induce a map ϕ⊕ ψ : U ⊕ V → U ′ ⊕ V ′ given by:

u⊕ v 7→ ϕu⊕ ψv
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The tensor product U ⊗V is defined as the vector-space generated by pairs u⊗ v
subject to the relations:

(u+ t)⊗ v = u⊗ v + t⊗ v for all t, u ∈ U and v ∈ V

u⊗ (v + w) = u⊗ v + u⊗ w for all u ∈ U and v, w ∈ V

c(u⊗ v) = (cu)⊗ v = u⊗ (cv) for c ∈ F

A vector x in a tensor product is often called tensor. An tensor of the form x = u⊗v
for u ∈ U and v ∈ V is called a pure tensor. The maps ϕ and ψ induce a map
ϕ⊗ ψ : U ⊗ V → U ′ ⊗ V ′ defined on pure tensors as:

u⊗ v 7→ ϕu⊗ ψv

The direct sum ⊕ and tensor product ⊗ have the following properties.

(a) (Tensor Universal Property) Let Bil(U, V ;W ) denote the space of maps f :
U × V → W that are bilinear, i.e. linear in each variable. Then Hom(U ⊗
V,W ) ' Bil(U, V ;W ) via the canonical map:

ϕ ∈ Hom(U ⊗ V,W ) 7→ ((u, v) 7→ ϕ(u⊗ v)) ∈ Bil(U, V ;W )

In particular, to specify a map U ⊗ V → W , it suffices to specify a map on
pure tensors u⊗ v 7→ B(u, v) where B : U × V → W is bilinear. For (a)-(g),
we specify all maps from tensor products in terms of pure tensors in this way.

(b) (Associativity) U⊕ (V ⊕W ) ' (U⊕V )⊕W and U⊗ (V ⊗W ) ' (U⊗V )⊗W
via the canonical isomorphisms:

u⊕ (v ⊕ w) 7→ (u⊕ v)⊕ w u⊗ (v ⊗ w) 7→ (u⊗ v)⊗ w

(c) (Commutativity) U ⊕ V ' V ⊕ U and U ⊗ V ' V ⊗ U via the canonical
isomorphisms:

u⊕ v 7→ v ⊕ u u⊗ v 7→ v ⊗ u

(d) (Distributivity) U ⊗ (V ⊕W ) ' (U ⊗V )⊕ (U ⊗W ) via the canonical isomor-
phism:

u⊗ (v ⊕ w) 7→ (u⊗ v)⊕ (u⊗ w)

(e) (Unit) Let Z = {0} be the zero vector space and F be the base field as a vector
space. Then Z ⊕ U ' U and F⊗ U ' U via the canonical isomorphisms:

0⊕ u 7→ u c⊗ u 7→ cu
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(f) (Hom Additivity) Hom(U,W )⊕Hom(V,W ) ' Hom(U ⊕V,W ) (and similarly
for the second entry) via the canonical isomorphism:

A⊕B 7→ (u⊕ v 7→ Au+Bv)

(g) (Tensor-Hom Adjunction) V ⊗ U∗ ' Hom(U, V ) via the canonical isomor-
phism:

v ⊗ α 7→ (u 7→ α(u)v)

Motivation 2.18. Direct sums are fairly simple to understand, but tensor products
are (at first glance) rather opaque. What is a tensor product supposed to be? One
of our favorite ways to think about tensor products is as so:

a tensor is like a matrix, but shaped like a cube (or hyper-cube) instead of a square

What do we mean by this? Well, suppose that {ei}ni=1 is a basis of a vector space
V . One can show then that the pure tensors ei ⊗ ej form a basis for V ⊗ V . Then
every tensor x can be written uniquely as:

x =
∑
i,j

aijei ⊗ ej

Here aij are coefficients in F. We then can interpret the numbers aij as entries of a
matrix A = [aij]. Similarly, if we tensor together 3 different vector-spaces U⊗V ⊗W
with bases {ei}, {fj} and {gk}, then {ei ⊗ fj ⊗ gk} is a basis of the tensor product
and any tensor x ∈ U ⊗ V ⊗W can be written as:

x =
∑
i,j,k

aijkei ⊗ fj ⊗ gk

Thus we can interpret x in these bases as a cube-shaped array of numbers.
The point here is that U ⊗ V ⊗W is like a space of cube shaped matrices with

three “directions”; the U direction, the V direction and the W direction.

Review 2.19. (Morphism Spaces) The morphism space Hom(U, V ) between U
and V is the vector-space of linear maps from U to V . The isomorphism space
Iso(U, V ) ⊂ Hom(U, V ) is the open subset of invertible linear maps. The maps ϕ
and ψ induce an map Hom(ψ, ϕ) : Hom(U ′, V ) ' Hom(U, V ′) defined as:

f 7→ ψ ◦ f ◦ ϕ

The morphism spaces come with the following additional structure.

(a) (Application) A linear map Hom(U, V )⊗ U → V given by f ⊗ u 7→ f(u).
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(b) (Composition) A linear map Hom(U, V ) ⊗ Hom(V,W ) → Hom(U,W ) given
by f ⊗ g 7→ g ◦ f .

Review 2.20. (Dual Space) The dual space U∗ of U is the vector-space Hom(U,F)
of linear maps from U to F. ϕ induces a map ϕ∗ : (U ′)∗ → U∗ defined by the pullback
formula (b) below. The dual space comes equipped with the following additional
structure and properties.

(a) (Dual Pairing) A linear map U∗ ⊗ U → F given by (α, u) 7→ α(u).

(b) (Pullback) A linear map Hom(U, V )⊗V ∗ → U∗ given by (f, α) 7→ α ◦ f . α ◦ f
is also denoted by f ∗α.

(c) (Double Dual) The double dual (U∗)∗ has a canonical isomorphism U ' (U∗)∗

given by:
u 7→ (α 7→ α(u))

Review 2.21. (Exterior Algebra) The exterior algebra ΛU is the algebra with
product ∧ generated as an algebra by the scalars c ∈ F and vectors u ∈ U , which
are subject to the relations:

u ∧ v = −v ∧ u for any u, v ∈ U c ∧ u = cu for any c ∈ F and u ∈ U

Note that the products of algebras are associative and bilinear. The latter means
we have the identity:

(u+ v)∧w = u∧w+ v ∧w and u∧ (v+w) = u∧ v+u∧w for any u, v, w ∈ ΛU

The map ϕ induces an map Λϕ : ΛU → ΛU ′ given by:

u1 ∧ · · · ∧ uk 7→ (ϕu1) ∧ · · · ∧ (ϕuk)

The exterior algebra comes equipped with the following structure.

(a) (Grading) A decomposition ΛU =
⊕dim(U)

k=0 ΛkU . Here Λ0U = F ⊂ ΛU and
ΛkU is (for k > 0) the span of the elements α ∈ ΛU of the form α = u1∧· · ·∧uk.
Note, in particular, that Λ1U ' U canonically.

An x ∈ ΛkV is said to have degree k. The degree of x is denoted deg(v).

(b) (Exterior Product) A product map ΛU⊗ΛU → ΛU given by u⊗v 7→ u∧v that
is compatible with the decomposition from (a) in the sense that if α ∈ ΛjU
and β ∈ ΛkU then:

α ∧ β = (−1)ijβ ∧ α
Note that c ∧ α = cα for c ∈ Λ0U = F.
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(c) (Interior Product) A linear map U∗ ⊗ ΛU → ΛU , denoted by u⊗ α 7→ ι(u)α
or by (u, α) 7→ iuα, and defined uniquely by the following properties.

- (Degree 0 & 1) For c ∈ Λ0U, α ∈ Λ1U and u ∈ U∗, we have:

ιuc = 0 ιuα = u(α)

- (Leibniz Rule) For α ∈ ΛjU, β ∈ ΛkU and u ∈ U∗, we have:

ιu(α ∧ β) = (ιuα) ∧ β + (−1)jα ∧ (ιuβ)

Note that of we let U = V ∗, so that U∗ = (V ∗)∗ ' V , the interior product is
instead a map ι : V ⊗ ΛV ∗ → V .

(d) (Anti-Symmetric Multi-Linear Forms) Let Asymk(V ) denote the vector-space
of anti-symmetric k-linear forms on V . That is, an element A ∈ Asymk(V ) is a
map A : ×k1V → F such that for any permutation σ : {1, . . . , k} → {1, . . . , k}:

A(vσ(1), . . . , vσ(k)) = (−1)sign(σ) · A(v1, . . . , vk)

Where sign : Σk → {±1} is the usual sign of a permutation σ ∈ Σk. Then
ΛkV ∗ ' Asymk(V ) via the natural isomorphism:

ω 7→ A A(v1, . . . , vk) := ι(vk)ι(vk−1) . . . ι(v1)ω ∈ Λ0V ∗ ' F

Given a map f : U → V , we get a map f ∗ : V ∗ → U∗ and thus a map
Λ(f ∗) : ΛV ∗ → ΛU∗ sending ΛkV ∗ to ΛkU∗. Under the identifications ΛkU∗ '
Asymk(U) and ΛkV

∗ ' Asym(V ), this map corresponds to the map:

f ∗ : Asymk(V )→ Asymk(U) [f ∗A](v1, . . . , vk) = A(f(v1), . . . , f(vk))

Remark 2.22. For our purposes, the exterior algebra ΛkV ∗ of the dual V ∗ will
be much more important that the exterior algebra of V itself. In particular, the
interpretation of elements ω ∈ ΛkV ∗ as anti-symmetric multi-linear forms, as allowed
by Review 2.21(d) above, will be used constantly.

Motivation 2.23. The exterior algebra is another construction that, like the tensor
product, can be very difficult to understand when first encountered. We will now
provide some intuition for this. It is easiest to understand things using the exterior
algebra of the dual ΛkV ∗, and per Remark 2.22 this is really better for us anyway.

First, consider an element ν ∈ Λn(Rn)∗. By Review 2.21(d), ν corresonds to
an n-linear, anti-symmetric form Aν ∈ Asymn(Rn). What is an example of such a
form? One example is:

A1(v1, . . . , vn) = det([v1|v2| . . . |vn])
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Here M(v) := [v1|v2| . . . |vn] is the matrix whose columns are the vectors vi. The
geometric interpretation of this form is clear: if Q represents the cube with unit
length edges and P (v) = M(v)Q represents the (higher dimensional) parallelepiped
made by applying M(v) to Q, then:

A1(v1, . . . , vn) = ± volume(P (v))

We should interpret Aν similarly: Aν is a like a “volume measuring stick” or a
“choice of volume scale.” If you provide Aν with a parallelepiped P (v), Aν spits
out a number Aν(v1, . . . , vn) that measures the “signed size” of P (v) in the units
of Aν . This “signed size” has many of the same formal properties as the usual
determinant: for instance, if you switch around the order of the vectors (v1, . . . , vn),
the determinat det([vi]) changes by a sign (because the volume of the parallelepiped
P (v) stays the same). The quantity Aν behaves similarly.

Now let’s consider a general ν ∈ ΛkV ∗. Again, if k = dim(V ), we interpret ν as
specifying a sort of signed volume scale on V via the k-linear form Aν . If k < n,
then we can consider any dimension k-subspace. Then by Review 2.21(4), we have
a map ι∗ : Λk(V ∗) → Λk(P ∗) given by the inclusion ι : P ↪→ V . Then since ι∗ν is
on P and P is k-dimensional, ι∗ν can be interpreted as a way of measuring volume
on P . Thus we have the following intuition:

An element ν ∈ Λk(V ∗) is, intuitively, an assignment of an (signed) area scale to
each k-dimensional subspace P ⊂ V .

The final topic of discussion for this sub-section is that of orientations. This
is a somewhat non-standard topic in linear algebra courses, even the theoretically
oriented ones, so the reader may be seeing this construction for the first time.

Definition 2.24. The orientation space oU of a vector-space is the set:

oU := (ΛnU − 0)/R+

That is, an element [µ] ∈ oU is an equivalence class of vector µ ∈ ΛnU modulo scal-
ing by a non-negative constant λ ∈ R+. An element o ∈ oU is called an orientation
of U . The orientation space has the following properties:

(a) (Z/2Z-action) oU has a Z/2Z action given by k · [µ] = [(−1)kµ] for k ∈ Z/2Z.
Furthermore, this action is free and transitive.

(b) (Isomorphisms) An isomorphism ϕ : U ' U ′ induces an isomorphism oϕ :
oU ' oU ′ given by [u] 7→ [Λϕ(u)] that commutes with the Z/2Z action. Note
that an arbitrary map ϕ does not induce a map oϕ of any sort.

Motivation 2.25.
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Figure 5: A picture of what a k-form (in this case, a 2-form ω) does. In this picture,
we have 3 2-dimensional rectanges (red, green and blue) in a 3-dimensional space
V . ω takes those rectangles (with a big of extra information) and assigns them a
signed area, given on the right by the dot of the corresponding color.

Exercise 2.26. Here are some linear algebra exercises dealing with the constructions
that were reviewed in this chapter. Let U, V and W be vector-spaces throughout.
Also assume that V is dimension n.

(a) Symk(V ) is the vector-space of k-linear maps to F from V that are symmetric
in each entry. Compute the dimension of ΛkV and Symk(V ) for each k.

(b) Show, by applying (a), that the determinant map:

(v1, . . . , vn) 7→ det([v1| . . . |vn])

is the unique anti-symmetric, n-linear map ×n1Rn → R whose value is 1 on
(e1, . . . , en) (where {ei} is the standard basis).

(c) Show, by applying (b), that the map Λϕ : ΛnV → ΛnV induced by a linear
map ϕ : V → V is just the map µ 7→ det(ϕ) · µ. Deduce that the map
oϕ : oV → oV is given by [µ] 7→ sign(det(ϕ)) · [µ].

(d) Show that the wedge product ∧ on ΛV is graded commutative: that is, show
that if α ∈ ΛjV and β ∈ ΛkV , then α ∧ β = (−1)jkβ ∧ α.
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(e) Prove the following stronger version of the tensor-hom adjunction property in
Review 2.17:

Hom(U, V ⊗W ) ' Hom(Hom(V, U),W )

(f) Show that ιvιwα + ιwιvα = 0. In particular, ι2wα = 0.

2.4 Constructions Of Bundles

As we stated at the begining of §2.3, the constructions discussed in that section can
be extended to operations on vector bundles. Here is an informal statement of how
this works.

Theorem 2.27. (Informal Vector Spaces =⇒ Bundles) Every operation for vector
spaces in §2.3 can be converted into an analogous operation on vector bundles over a
fixed base X. The following table provides a dictionary for term-to-term translation
of the properties of a vector-space operation into properties of the correspondign
bundle operation.

vector spaces vector bundles over X
canonical linear maps canonical bundle maps

canonical isomorphisms canonical bundle isomorphisms
base field F trivial bundle X × F

It may be helpful for the reader to see an example of this principal. Let us
therefore state a version of Review 2.20 for bundles.

Example 2.28. (Bundle Dual) Let E and F be a bundles over a manifold X, and
let ϕ : E → E ′ be a bundle isomorphism.

The dual bundle E∗ of E is the vector bundle Hom(E,X × F) of (fiberwise)
linear maps from E to F. The bundle isomorphism ϕ induces a bundle isomorphism
ϕ∗ : (U ′)∗ → U∗. The dual bundle comes equipped with the following additional
structure and properties.

(a) (Dual Pairing) A linear bundle map U∗ ⊗U → X × F given by α⊗ u 7→ α(u)
fiberwise.

(b) (Pullback) A linear bundle map Hom(U, V )⊗V ∗ → U∗ given by f⊗α 7→ α◦f
fiberwise. α ◦ f is also denoted by f ∗α.

(c) (Double Dual) The double dual (E∗)∗ has a canonical bundle isomorphism
E ' (E∗)∗ given fiberwise by:

u 7→ (α 7→ α(u))
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The informal statement of Theorem 2.27 discussed above is often sufficient for
the working mathematician. However, we now state a careful Proposition explaining
how this conversion actually works. The proof of this statement is long, so we defer
it to Appendix 5.1.

Remark 2.29. Note that there is a version of the following statement for tuples
of vector bundles that could probably incorporate every case that we are interested
in, but to reduce the complexity of notation and everything, we have avoided this
generalization. It is very similar to the version that we are about to describe.

Proposition 2.30. Let F be an operation on vector spaces with these properties.

(a1) (Object Map) F associates a new vector-space F (V ) to any vector-space V .

(a2) (Morphism Map) F associates a linear map F (f) : F (U) → F (V ) to any
linear map f : U → V .

(a3) (Composition) F (f ◦ g) = F (f) ◦ F (g) for linear maps f and g.

(a4) (Smoothness) The map Hom(U, V )→ Hom(F (U), F (V )) given by ϕ 7→ F (ϕ)
is smooth as a map between vector-spaces.

Then there is unique4 operation F on vector bundles with the following properties.

(b1) (Object Map) F associates a vector bundle F (E) to any vector bundle E.

(b2) (Morphism Map) F associates a bundle map F (f) : F (D) → F (E) to any
bundle map f : D → E.

(b3) (Composition) F (f ◦ g) = F (f) ◦ F (g) for bundle maps f and g.

(b4) (F (E) Trivial On Trivial Bundles) For a trivial vector bundle X × V , there is
a natural isomorphism F (X × V ) ' X × F (V ).

(b5) (F (f) Standard On Trivial Bundles) If f : X × U → X × V is a bundle map
of trivial bundles, then we can write f as:

f(x, v) = (x, fx(v))

Here x 7→ fx is a smooth map X → Hom(U, V ) from X to the space of linear
maps from U to V . Then under the identifications of F (X×U) ' fX×F (U)
and F (X × V ) ' X × F (V ), we have:

f(x, u) = (x, F (fx)u) ∈ Y × F (V ) ' F (Y × V )

4In the sense of Exercise 2.31(c)
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Here is the idea behind the proof: we construct F (E) as a certain type of quotient
space, by taking all of the local trivializations provided by the vector-bundle axiom,
applying the construction of F to each trivialization, and then gluing it all together.

Exercise 2.31. Here are some exercises for the reader dealing with all of the bundle
nonsense discussed in this section.

(a) Let π : L → X be a vector bundle of rank 1 over X. Show that the bundle
End(L) of maps from L to itself is trivializable. (Hint: Find a section then
use Exercise 2.16(f)).

(b) Let D and E be two vector bundles with base X. Given a section A : X →
Hom(D,E) of the morphism bundle Hom(D,E), we can produce a bundle
map fA : D → E by applying A to D fiberwise. That is:

fA(x, v) = (x,Axv)

Show that, conversely, every bundle map f : D → E can be associated to a
unique section A of Hom(D,E).

(c) Show that the extension of an operation F from vector-spaces to vector-
bundles (as described in Proposition 2.30) is unique in the following sense,
using only Properties 2.30(b1)-(b5).

If F and F ′ are two operations on vector bundles satisfying Properties 2.30(b1)-
(b5), then there is a canonical isomorphism τE : F (E) ' F ′(E) with the fol-
lowing property: for any bundle map f : D → E, F (f) and F ′(f) are related
by F (f) ◦ τD = τE ◦ F ′(f).

Note that you do not need to know the proof of Proposition 2.30.

2.5 Natural Bundles On Smooth Manifolds

Smooth manifolds have many natural vector bundles and fiber bundles associated
to them. Indeed, this is one the main ways that bundles arise in mathematical
nature. These bundles are usually made by applying some of the natural operations
discussed in §2.4 to the tangent bundle.

Motivation 2.32. What is that tangent bundle intuitively? Near a point x, X
looks locally like a flat space, i.e Rn for some n. There is a space of “infinitesimal
directions” that one can travel out from x: these are the vectors that are “tangent
the the manifold at x”, and the vector-space populated by these vectors is the
tangent space TXx, the fiber of the tangent bundle at x. The tangent bundle arises
when one joins all of these tangent spaces together into a single space.
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We will see later that, when the manifold X sits inside of another manifold (say,
some Euclidean space Rm) in a sufficiently nice way, then the tangent space TXx at
a point is literally the space of vectors in Rm that are tangent to X in Rm.

Figure 6: A pair of manifolds sitting in R3, a curve (left) and a surface (right). The
red dots are points on the manifolds and the blue lines/planes are the tangent spaces
at those points. The tangent bundle is made by putting all of these blue tangent
spaces together into a single bundle.

Proposition 2.33. (Bundles On Smooth Manifolds) Let X be a smooth manifold.
Then we can associate the following bundles to X.

(1) (Tangent Bundle) The tangent bundle can be defined in terms of an operation
T associating a bundle TX to any manifold X. This operation exists and
satisfies the following axioms.

(a) (Object Map) T associates a smooth vector bundle TX to any smooth
manifold X. TX is called the tangent bundle of X.

(b) (Morphism Map) T associates a bundle map Tf : TX → f ∗TY between
TX and the pullback of TY by f to any any smooth f : X → Y .

(c) (Composition) T respects composition: T (g ◦ f) = f ∗(Tg) ◦ Tf .

(d) (TV Is V ×V On Vector-Spaces) TV ' V ×V canonically for any vector
space V . Here V × V is of course the trivial bundle with fiber V .
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(e) (Tf Is Jacobian On Vector-Spaces) If f : U → V is a smooth map
between vector-spaces, then via the identification in (c), we have f ∗TV '
U × V and:

Tf(x, v) = (x, dfx(v)) ∈ U × V ' f ∗TV

Here dfx is the Jacobian of f at x.

A section Z of the tangent bundle is called a vector-field.

(2) (Cotangent Bundle) The cotangent bundle T ∗X, defined to be the dual bundle
to TX. Like TX, T ∗X can be defined in terms of an operation T ∗ associating
a bundle T ∗X to any manifold X that satisfies analogous axioms.

(a) (Object Map) T ∗ associates a smooth vector bundle T ∗X to any smooth
manifold X. T ∗X is called the cotangent bundle of X.

(b) (Morphism Map) T ∗ associates a bundle map T ∗f : f ∗(T ∗Y ) → T ∗X
between the pullback of T ∗Y by f and T ∗X to any smooth f : X → Y .

(c) (Composition) T ∗ reverses composition: T ∗(g ◦ f) = g∗T ∗f ◦ Tg.

(d) (TV Is V × V ∗ On Vector-Spaces) T ∗V ' V × V ∗ canonically for any
vector space V . Here V × V ∗ is the trivial bundle with fiber V ∗.

(e) (Tf Is Dual Jacobian On Vector-Spaces) If f : U → V is a smooth
map between vector-spaces, then via the identification in (c), we have
f ∗T ∗V ' U × V ∗ and:

T ∗f(x, α) = (x, α ◦ dfx) = (x, (dfx)
∗α) ∈ U × U∗ ' T ∗U

Here dfx is the Jacobian of f at x.

A section α of T ∗X is called a 1-form or co-vectorfield.

(3) (Tensor Bundles) The tensor bundle of type (a, b) of X is the bundle
TX⊗a⊗T ∗X⊗b. A section τ of such a tensor bundle is called an (a, b)-tensor.

(4) (Exterior Algera Bundle) The exterior algebra bundle ΛX of X is the bun-
dle acquired by taking applying the exterior algebra operation to the cotangent
bundle: ΛX := Λ(T ∗X). ΛX decomposes into sub-bundles ΛkX := Λk(T ∗X):

ΛX =
n⊕
k=0

ΛkX

A section α of ΛkX is called a k-form and the space of k-forms is denotes by
Ωk(X). Since Λ1X = Λ1(T ∗X) ' T ∗X, this terminology is consistent with
the terminology of sections of T ∗X.
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(5) (Orientation Bundle) The orientation bundle oX of X is the bundle ac-
quired by applying the orientation space operation to the tangent bundle:
oX = o(TX). The orientation bundle is a Z/2Z-fiber bundle with a Z/2Z
acting fiber-wise by:

k · [µ] 7→ [(−1)kµ] for k ∈ Z/2Z and [µ] ∈ opX

A section o of oX is called an orientation of X. A manifold is called ori-
entable if an orientation o of X exists and an oriented manifold (X, o) is
a pair of a manifold X and an orientation o.

Exercise 2.34. Here are some exercises about these special bundles on manifolds.

(a) Show that S1 has trivial tangent bundle: TS1 ' S1 × R. (Hint: Use the
isomorphism S1 ' R/Z and the charts on R/Z that were defined in Exercise
2.9(b) to construct a non-vanishing vector-field on S1).

(b) Show that T (X × Y ) ' TX × TY . Here TX × TY is the bundle whose
total space is TX × TY , whose base space is X × Y and with projection
TX × TY → X × Y given by projection on either factor.

(c) Let T n be the n dimensional torus, that is T n ' Rn/Zn. Show that the tangent
space T (T n) of T n is trivial.

(d) We are now going to prove that there are manifolds that are not orientable:
in particular, that the total space M of the mobius bundle π : M → S1 is not
orientable as a manifold. We use the following steps.

(i) Define the orientation bundle of a vector-bundle o(E) to be o(Λrk(E)E −
0)/ ∼ as in Definition 2.24 (that is, we apply the orientation space con-
struction to each fiber). Show thats o(M) of M as a bundle has no
section.

(ii) Prove the lemma: Consider π : E → X is a vector bundle and the kernel
ker(Tπ) of the bundle map Tπ : TE → π∗TX (that is, the bundle whose
fiber at e ∈ E is the kernel of Teπ : TEe → TXπ(x)), then there is an
isomorphism:

ker(Tπ) ' π∗E

It is a fact that is f : E → F is a surjective bundle map, then E '
ker(f)⊕ F . Thus conclude that TE ' π∗E ⊕ π∗TX.

(iii) Prove the following fact: if U and V are vector-spaces of dimension m
and n, then Λm+n(U ⊕ V ) = ΛmU ⊗ΛnV canonically. This isomorphism
extends to bundles.
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(iv) Show that for a vector-bundle E, the orientation bundle o(E) has a sec-
tion if and only if Λrk(E)E is trivializable.

(v) Use (iii) and (iv) to show the following lemma: Suppose D,E are bundles
on X where o(D) has a section. Then o(E) has a section if and only if
o(D ⊕ E) has a section.

(vi) Use (i), (ii) and (v) to finish the proof.

2.6 Maps Of Manifolds

With the language of bundles worked out in greater detail in the previous sections,
we now have the tools to define some of the most important special classes of maps
between manifolds and isotopies of maps. Let us first discuss three fundamental
types of maps between manifolds: immersions, submersions and embeddings.

Definition 2.35. (Maps Of Manifolds II) Let X and Y be two smooth manifolds.

(a) An immersion ι : X → Y is a smooth map where Tι : TX → ι∗TY is
injective, i.e. the linear map Tιp : TpX → Tι(p)Y = ι∗TpY is injective.

(b) A submersion σ : X → Y is a smooth map such that Tσ : TX → σ∗TY is
surjective, i.e. the linear map Tσp : TpX → Tσ(p)Y = σ∗TpY is surjective.

(c) An embedding e : X → Y is an immersion that is a homeomorphism onto
its image. An embedded sub-manifold S of Y is a subset S ⊂ Y that is
the image e(X) of an embedding e : X → Y .

Motivation 2.36. An embedding e : X → Y is, intuitively, a realization of X as
a sub-object of Y . Examples such the unit circle inside of the plane or a cylinder
inside of 3-d space come to mind. An immersion ι : X → Y is slightly weaker: here
any point p ∈ X has a neighborhood U where ι(U) is embedded, but globally the
image of X might intersect itself. A submersion σ : X → Y is locally similar to a
fiber bundle: a higher-dimensional space X mapping to a lower-dimensional space
Y , where the fibers σ−1(0) look like nice sub-spaces of X.

Definition 2.37. (Isotopies) Let X and Y be smooth manifolds.

(a) An isotopy is a map Φ : X × [0, 1] → Y . We use Φt : X → X to denote the
map Φ|X×{t} : X × {t} → Y , and we often use the notation (x, t) 7→ Φt(x) for
the isotopy.

(b) An isotopy of immersions, embeddings or submersions, respectively,
is an isotopy Φ : X × [0, 1] → Y where Φt is an immersion, embedding or
submersion, respectively, for each t.
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Figure 7: Here are the three types of maps that we have defined: an immersion of
a circle on the surface of a blue sphere; an embedding of a circle in 3-d space; and
a submersion of an (open) square (as a subset of the plane) into a line segment.

(c) An ambient isotopy Φ : X × [0, 1] → X is an isotopy such that Φt is a
diffeomorphism for each t and Φ0 = Id.

(d) The time derivative dΦ
dt
|s at time s ∈ [0, 1] of an isotopy Φ : X × [0, 1]→ Y

is the section dΦ
dt
|s : X → Φ∗sTY given by:

dΦ

dt
|s := TΦ(et) ◦ ιs

Let us elaborate on the pieces of this formula.

- TΦ : T (X × [0, 1])→ Φ∗TY is the tangent space map induced by Φ.

- et : X × [0, 1] → T (X × [0, 1]) is the vector-field on X × [0, 1] pointing
in the t-direction. More precisely, et is the vector-field given by (x, t) 7→
(z(x), s(t)) where we use the identification T (X × [0, 1) ' TX × T [0, 1],
z : X → TX is the zero section and s : [0, 1] → T [0, 1] ' [0, 1] × R is
defined by s(t) = (t, 1).

- ιs : X → X × [0, 1] is the inclusion x 7→ (x, s) of X into X × [0, 1].

- The map Γ(Φ∗TY )→ Γ(ι∗sΦ
∗TY ) = Γ(Φ∗sTY ) that we are using to take

TΦ to TΦ ◦ ιs is the map on sections induced by ιs : X → X × [0, 1
defined in Definition 2.13(c). We are using the fact that Φs = Φ ◦ ιs and
thus ι∗sΦ

∗
sTY = (Φ ◦ ιs)∗TY = Φ∗sTY , see Proposition 2.14.

(e) If Z is a vector-field on a manifoldX, then the exponential expZ : X×[0, 1]→
X, often denoted by (x, t) 7→ exp(Z)(t, x) or exptZ(x), is the unique ambient

35



isotopy of X (see Proposition 2.38) such that:

d

dt
expZ |s(x) = Z ◦ expZ(s, x)

Here are two important existence results about isotopies. The first is a version of
a result of Picard-Lindelof, giving an existence result for isotopies with a prescribed
time-derivative. The second is called isotopy extension, and it assrts that any isotopy
can be factored into a fixed smooth map and an ambient isotopy.

Proposition 2.38. (Version Of Picard-Lindelof) Let X be a compact manifold
with boundary and let Z : X × [0, 1] → π∗t TX ⊂ T (X × [0, 1]) be a smooth time-
dependent vector-field such that Z|[0,1]×∂X = 0. Then there is a unique ambient
isotopy Φ : X × [0, 1]→ X such that:

dΦ

dt
|s = Z ◦ Φs and Φ0 = Id : X → X

Theorem 2.39. (Isotopy Extension Theorem) Let Φ : X× [0, 1]→ Y be an isotopy
of embeddings of a manifold with boundary X through a manifold with boundary Y .
Assume that there is a neighborhood U of ∂X in X such that Φ|U×[0,1](x, t) = ΦU(x)
for some smooth ΦU : U → Y where ΦU(∂X) ⊂ ∂Y .

Then there exists an ambient isotopy Ψ : Y×[0, 1]→ Y such that Ψ|V×[0,1](y, t) =
y for some neighborhood V of ∂Y and such that Φt(x) = Ψt(Φ0(x)).

Motivation 2.40. One can think of an isotopy Φ : X × [0, 1] → Y as a motion of
manifolds that look like X through some ambient space Y . Other words that make
sense for analogy: a cartoon, a slide show, a flip book etc.

The last topic of this section is diffeomorphism and mapping class groups.

Definition 2.41. (Diffeomorphisms And Mapping Classes) Let X be a compact
manifold with or without boundary. We adopt the following notation and definitions.

(a) Diff(X) denotes the group of diffeomorphisms of X.

(b) Diff(X, ∂X) denotes the group of diffeomorphisms that are the identity on a
neighborhood of the boundary. The neighborhood may depend on the partic-
ular diffeomorphism.

(c) Diff0(X) ⊂ Diff(X) denotes the subgroup of diffeomorphisms ϕ that are iso-
topic to the identity through diffeomorphisms, i.e. such that there exists an
ambient isotopy Φ : X × [0, 1]→ X such that Φ1 = ϕ.
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Figure 8: A picture of an isotopy (of embeddings) of Φ : S1 × [0, 1] → R3. Here
we are picturing the isotopy as a series of maps, a cartoon or movie of sorts. The
light black outline along with the bold red and blue end circles outline the cylinder
S1 × [0, 1] serving as the domain of the isotopy. The vector-field along the initial
red circle is precisely dΦ

dt
|0 as defined in Definition 2.37(d).

(d) Diff0(X, ∂X) ⊂ Diff(X, ∂X) denotes the subgroup of diffeomorphisms ϕ in
Diff(X, ∂X) that are isotopic to the identity through diffeomorphisms in Diff(X, ∂X),
i.e. such that there exists an ambient isotopy Φ : X × [0, 1] → X such that
Φ1 = ϕ and such that Φt is the identity in a neighborhood of ∂X for each t.

(e) The mapping class group MC(X) of X is defined to be the quotient group
Diff(X)/Diff0(X). An element [ϕ] ∈ MC(X) is called a mapping class.

(f) The mapping class group rel boundary MC(X, ∂X) of (X, ∂X) is de-
fined to be the quotient group Diff(X, ∂X)/Diff0(X, ∂X). An element [ϕ] ∈
MC(X, ∂X) is also called a mapping class.

Motivation 2.42. (Mapping Classes) If one thinks of isotopies of diffeomorphisms
as being “paths in the space of diffeomorphisms,” then one can think of MC(X, ∂X)
as a being the set of connected components of

Exercise 2.43. Here are some exercises about maps of manifolds.

(a) (Courtesy Of Nikhil) Find an example of an injective immersion f : X → Y
that is not an embedding. Find two injective immersions f1 : X1 → Y and
f2 : X2 → Y with the same image f1(X1) = f2(X2) but where X1 and X2 are
not homeomorphic. (Hint: Here’s a possibility. Let Y = R2 and try to make
f1(X1) and f2(X2) shaped like a φ.)
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(b) Let I = [0, 1] be the interval and ∂I = {0, 1}. Show that MC(I, ∂I) is the
trivial group. That is, show that, for any smooth and smoothly invertible
map f : [0, 1] → [0, 1], there exists a smooth map g : [0, 1] × [0, 1] → [0, 1],
(t, x) 7→ gt(x), such that g1(x) = f(x), g0(x) = x and gt : [0, 1] → [0, 1] is
smooth and smoothly invertible for every t ∈ [0, 1].

(c) (Hard) Let A = S1 × [0, 1] be the annulus, whose boundary is ∂A = S1 t S1.
Here we will identity S1 as the unit circle in C. Prove that MC(A, ∂A) ' Z.

2.7 Constructing Manifolds

In this section, we will discuss several ways of constructing new manifolds from old
ones. We first discuss the simplest examples, where the atlas structure is obvious.
We then discuss fibers of submersions, which have a natural manifold structure.
This is a consequence of, and can be interpreted as a generalization of, the Implicit
Function Theorem (see Appendix 5.2). Finally, we discuss gluing manifolds with
boundary along components of said boundary. This construction has many impor-
tant special cases: connect sums, mapping tori and open books are the ones that
we will discuss.

Proposition 2.44. (Basic Constructions) We will now discuss the most elementary
constructions of new manifolds from old.

(a) (Open Subsets): Any open subset U ⊂M of a manifold M is itself a manifold.

(b) (Disjoint Unions): The disjoint union M tN of two manifolds is a manifold.

(c) (Products): The product M ×N of two manifolds is a manifold.

(d) (Pullback): Given a smooth manifold M , a topological space X and a home-
omorphism ϕ : X ' M , X has a canonical smooth structure that makes ϕ a
diffeomorphism:

Proof. We will now define an atlas for each of these examples. By Remark 2.5, the
atlas that we define doesn’t need to be maximal. In each of these cases, checking
the atlas axioms is trivial.

(a) - Open Subsets: If A is the atlas of M , then the atlas B of U consists of
charts (V ∩ U,ϕ|U∩V ) where (V, ϕ) is a chart in A.

(b) - Disjoint Unions: The disjoint union atlas A t B is just the union of the
atlases A and B.

(c) - Products: The product atlas A×B is just the set of charts (U × V, ϕ× ψ)
for (U,ϕ) ∈ A and (V, ψ) ∈ B.
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(d) - Pullback: Here we just take the atlas ϕ∗A on X to be the set:

ϕ∗A = {(ϕ−1(U), φ ◦ ϕ|(U, φ) ∈ A}

Another extremely common way of producing manifolds is as fibers of submer-
sions. The following result codifies this method.

Proposition 2.45. (Fibers Of Submersions) Let f : X → Y be a smooth map
and fix y ∈ Y . Suppose that f is a submersion along f−1(y): that is, for every
x ∈ f−1(y), Txf : TxX → f ∗TyY is surjective. Then:

• (a) (Manifold Structure) F = f−1(y) ⊂ X has a natural manifold structure.

• (b) (Embedded) The inclusion ι : F → X is an embedding.

Proof. (a) - Manifold Structure: We define an atlas F on F like so. Take any x ∈ F
and any pair of charts (U,ϕ) on X and (V, ψ) on Y such that f(x) = y is in V .
Then the map:

ψ ◦ f ◦ ϕ−1 : ϕ(U ∩ f−1(V ))→ ψ(V )

is a smooth map between (non-empty) open subsets of Rm+n and Rm.
Denote g = ψ ◦ f ◦ϕ−1, P = ϕ(U ∩ f−1(V )) ⊂ Rm+n and Q = ψ(V ) ⊂ Rn. Also

denote dim(X) = m + n and dim(Y ) = m. Note that Txf is surjective, Tzψz and
Tpϕ

−1 are isomorphisms for any points p ∈ P and z ∈ V . Thus the map:

dgϕ(x) : Rm+n = Tϕ(x)P → Tg(ϕ(x))Q = Rm

is surjective, since by the composition property of Tg we have the equation:

dgϕ(x) = Tϕ(x)g = Tf(x)ψ ◦ Txf ◦ Tϕ(x)ϕ
−1

The surjectivity of the linear map dgϕ(x) implies that we can pick a splitting Rm+n '
Rm ⊕ Rn so that dgϕ(x)|Rm : Rm ⊕ {0} ' Rm is an isomorphism. Thus by the
Implicit Function Theorem 5.2, we can choose a neighborhood A ⊂ Rn ⊕ Rm, a
neighborhood B ⊂ Rm+n of ϕ(x) and a diffeomorphism g : A ' B such that
g((Rn ⊕ 0) ∩ A) = B ∩ ϕ(F ). With this set of choices, we can define a chart (O, φ)
on F by:

O := ϕ−1(B ∩ ϕ(F )) φ := πRn ◦ g−1 ◦ ϕ|O
Here πRn : Rn⊕Rm → Rn is projection to the Rn component. Note that the inverse
of φ is given (in terms of the inclusion ιRn : Rn → Rn ⊕ Rm) as:

φ−1 = ϕ−1 ◦ g ◦ ιRn
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We now define the atlas F on F to be the set of all charts (O, φ) constructed as
above. To check the atlas axioms, we note first that the covering axiom is immediate:
we perform this construction for every x ∈ F . For the transition axioms, we note
that if (O0, φ0) and (O1, φ1) are two charts in F, then on the domain of definition
the transition map is given by:

φ1 ◦ φ−1
0 = πRn ◦ (g−1

1 ◦ ϕ1 ◦ ϕ−1
0 ◦ g0) ◦ ιRn

The middle expression is a diffeomorphism between open subsets of Rn ⊕ Rm, and
thus the whole expression is smooth between the appropriate open subsets of Rn.

(b) - Embedded: To check that the map ι : F → X is an embedding, we just
need to check that the map ι ◦ φ−1 is an immersion for any chart (O, φ) on F .
Indeed, the definition of the chart maps show that on their domain of definition
ι ◦ φ−1 = ϕ−1 ◦ g ◦ ιRn where ϕ−1 ◦ g is a diffeomorphism and ιRn is an immersion.
It follows that ι ◦ φ−1 is an immersion.

In the proof of Proposition 2.44, we utilized the implicit function theorem, it-
self a consequence of the inverse function theorem. These results are discussed in
Appendix 5.2.

The last few construction methods that we will discuss here are all instances of
instances of a construction that we will term “boundary gluing” in these notes. The
idea is that if a single manifold has two boundary components that are diffeomorphic
(or if two manifolds have diffeomorphic boundaries) we can glue the two boundary
components together to close up the original manifold in that area, creating a new
manifold. Here is a result formalizing the above idea.

Proposition 2.46. (Boundary Gluing) Let X be a manifold with boundary. Let
C,D ⊂ ∂X be closed components of ∂X respectively, and let ϕ : C ' D be a
diffeomorphism. Consider the equivalence relation ∼ϕ on X given by:

x ∼ϕ y if

{
y = ϕ(x) if x ∈ C, y ∈ D
x = ϕ(y) if x ∈ D, y ∈ C

Then X/ ∼ϕ is there exists a natural smooth structure on X/ ∼ϕ. If φ : C → D
and ψ : C → D are isotopic through diffeomorphisms, then X/ ∼φ' X/ ∼ψ.

Proof. Consider XtC×(−1, 1) and pick tubular neighorhoods τC : C×(−1, 0]→ X
and τD : D × [0, 1) → X of C and D respectively. Let τ = (τC , τD) denote the

choice of this pair of tubular neighborhoods, and let X̃τ,φ denote the quotient of
X t C × (−1, 1) by the equivalence relation generated by:

(x, s) ∼ τC(x, s) for (x, s) ∈ C × (−1, 0]
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(x, s) ∼ τD(ϕ(x), s) for (x, s) ∈ C × [0, 1)

Furthermore let π : X tC × (−1, 1)→ X̃τ,φ be the quotient map. An atlas on X̃τ,φ

can be defined as:

Ã = {(π(U), φ ◦ π|−1
π(U))|(U, φ) is a chart on (X \ (C tD)) t C × (−1, 1)}

The atlas axioms follow from those on (X \ (C t D)) t C × (−1, 1). There is

a homeomorphism [ι]τ : X/ ∼ϕ' X̃τ,φ descending from the inclusion ι : X →
X t C × (−1, 1), and we define the smooth structure on X̃τ,φ to be [ι]∗τ Ã. The

construction of X̃τ,φ depends on a choice of tubular neighborhood data τ , but it is

simple to verify that the map [ι]τ ◦ [ι]−1
σ : X̃σ,ϕ → X̃τ,ϕ is a diffeomorphism for two

choices σ and τ of tubular neighborhood data, so that the smooth structure [ι]∗τ Ã is
independent of τ .

We now discuss various special cases of the above construction. These include
connect sums, mappin tori and open books.

Definition 2.47. (Connect Sums) Let X and Y be two connected, compact n-
manifolds. We define the connect sum X#Y as so. Let ιX : Bn → X and ιY :
Bn → Y be embeddings of the closed n-ball into X and Y respectively. Then the
manifold:

Z := X t Y \ ιX(int(Bn)) t ιY (int(Bn))

has two Sn−1 boundary components C and D, one from the boundary of the ball
embedded into X and one from the boundary of the ball embedded into Y . Pick an
arbitrary diffeomorphism ϕ : C ' D and, using Proposition 2.46, define:

X#Y := Z/ ∼ϕ

Lemma 2.48. The connect sum is independent of the choice of ιX , ιY and ϕ in the
sense that any two choices of such data yield diffeomorphic manifolds.

Proof. (Sketch) It suffices to show that any two embeddings ι0, ι1 : Bn → X where
(X is connected) are isotopic in the sense that there exists an ambient isotopy
Φ : X × [0, 1]→ X such that ι1 = Φ ◦ ι0.

To see this, look at the centers ι0(0), ι1(0) of the balls in X. The centers are
connected by a path γ : [0, 1]→ X. By the isotopy extension theorem, we can find
an isotopy Φ : [0, 1]×X → X such that Φi(0) = γ(i) = ιi(0). Thus we can assume
that ι0(0) = ι1(0).

Then we show that we can assume that ι0(Bn) ⊂ int(ι1(Bn)). We can do this
by constructing a vector-field v on X which looks like the radial vector-field when
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restricted to ι0(Bn), and then applying Picard-Lindelof to get a flow which contracts
ι0(Bn) to a small neighborhood of ι0(0).

Finally, we have reduced to the case of showing that any embedding ι : Bn →
int(Bn) ⊂ Bn where ι(0) = 0 is isotopic to the identity map Bn → Bn. This is an
excellent exercise, which the reader is welcome to do. We will fill in this part of the
sketch if we have time.

Definition 2.49. (Mapping Torus) Let X be a compact smooth manifold with
boundary and let ϕ : X → X be a diffeomorphism. Then the mapping torus
M(X,ϕ) is the quotient space:

Map(X,ϕ) = X × [0, 1]/ ∼ϕ

Where here we identify the two boundary components X ×{0} and X ×{1} by the
equivalence relation ∼ϕ defined by:

(ϕ(x), 0) ∼ϕ (x, 1)

Definition 2.50. (Open Books) An abstract open book (P, φ) is a pair of a
smooth manifold with boundary P and a diffeomorphism φ : P → P that is the
identity in a neighborhood of the boundary. The manifold P is called the page,
the boundary ∂P is called the binding and the map φ : P → P is called the page
map or monodromy.

The geometric open book or geometric realization B(P, φ) of an abstract
open (P, φ) is the manifold constructed as so. Let Map(P, φ) be the mapping torus
of (P, φ). Then the boundary ∂Map(P, φ) is canonically diffeomorphic to ∂P × S1.
Similarly, the boundary ∂(∂P × D2) of the manifold ∂P × D2 (given by crossing
∂P with the 2-disk) is also canonically identified with ∂P × S1. Thus we have a
diffeomorphism ϕ : ∂Map(P, φ) ' ∂(∂P ×D2) and we can form the quotient:

B(P, φ) := Map(P, φ) t ∂P ×D2/ ∼ϕ

An open book decomposition of a manifold X is an abstract open book (Σ, φ)
and a diffeomorphism X ' B(P, φ).

Lemma 2.51. The diffeomorphism type of B(P, φ) depends only on the mapping
class [φ] ∈ MC(P, ∂P ).

Exercise 2.52. Here are some exercises regarding these constructions.

(a) Show that the only 2-manifolds with open book decompositions where the
pages are compact with non-trivial boundary are disojoint unions of 2-spheres.
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(b) Show that the geometric open book B(Bn, Id) of the abstract open book
(Bn, Id), with page the n-ball Bn and monodromy map given by the iden-
tity Id : Bn → Bn, is diffeomorphic to the (n+ 1)-sphere.

(c) Let A = S1× [0, 1] and let τ : A→ A be the map (θ, t) 7→ (θ+ t, t). This map
is called the dehn twist of S1 ' [0, 1]. Show that the geometric open book
B(A, τ) is the 3-sphere.

(d) (Very Hard) Let DSn denote the unit disk bundle of the tangent bundle
of the sphere with respect to some metric. Find a mapping class [τ ] ∈
MC(DSn, ∂DSn) where the open book (DSn, τ) has B(DSn, τ) ' S2n+1.

2.8 Pullback, Lie Derivatives, Exterior Derivatives And Integration

There are several fundamental operations on differential forms that show up con-
stantly when one is performing calculations. Some of these operations are inherited
from the fiberwise structure of the alternating algebra: the wedge product and in-
terior product are examples of this fiberwise structure. There are others, however,
that only make sense at the level of sections: pullbacks, Lie derivatives, exterior
derivatives and integration are the prime examples.

In this section, §2.8, we will define these global operations, give some intuition
and discuss their key properties.

Definition 2.53. (Pullback) Let f : X → Y be a smooth map. The pullback
map f ∗ : Ω(Y ) → Ω(X) of k-forms on Y to k-forms on X is defined on a section
ω ∈ Ω(X) as:

f ∗ω = Λ(T ∗f)(ω ◦ f)

Recall where we defined the maps in this definition.

- ω ◦ f = Γ(f)ω is the section of the pullback f ∗ΛkX gotten by applying the
map Γ(f) : Γ(ΛY )→ Γ(f ∗ΛY ) (described in Proposition 2.14) to ω.

- Λ(T ∗f) : f ∗Λ(T ∗Y )→ Λ(T ∗X) is the bundle map f ∗Λ(T ∗Y ) = Λ(f ∗T ∗Y )→
Λ(T ∗X) induced by the map T ∗f : f ∗T ∗Y → T ∗X described in Definition
2.33(2)(b) for the cotangent bundle.

Proposition 2.54. The pullback map f ∗ : Ω(X) → Ω(X) is a map of algebras: it
is linear and it commutes with the wedge product.

Remark 2.55. This definition can seem a little opaque, but we can write a fiberwise
expression for f ∗ω using the discussion in Review 2.21(d) about the relationship
between anti-symmetric multi-linear forms and the exterior algebra.
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Recall that any element ωy ∈ Λk(T ∗Y )y at a point y ∈ Y can be viewed a
k-linear form ωy : ×k1TyY → R by the discussion in Review 2.21(d). We denote
this by (v1, . . . , vk) 7→ ωy(v1, . . . , vk) ∈ R. Thus, given a section ω ∈ Ωk(Y ) of
ΛkY = Λk(T ∗Y ), we get a k-linear function ωy on TyY at each point y ∈ Y .
Similarly, given a map f : X → Y , we can pull back to get a section f ∗ω of Ωk(X)
and thus a k-linear function f ∗ωx at each x ∈ X.

In these terms, we can write f ∗ωx as:

f ∗ωx(u1, . . . , uk) = ωf(x)(Tf(u1), . . . , T f(uk))

In words, this says the following: to evaluate f ∗ωx on some vectors u1, . . . , uk ∈
TxX, we first push each ui through the map Tf : TX → f ∗TY to get a vector
Tf(ui) ∈ f ∗TYx = TYf(x). Then we evaluate ωf(x) : ×k1Tf(q)Y → R on the tuple
(Tf(u1), . . . , T f(uk)). This gives us the desired quantity.

Motivation 2.56. Remark 2.5 along with Motivation 2.23 combine to give the
following motivation for what the pullback is doing. In a small neighborhood U of a
point x ∈ X, the space X looks very much like TxX and f looks very much like the
map Tf : TxX → Tf(x)Y . We can think of a very small k-dimensional parallelepid
P (u) = M(u)C ⊂ TxX where M(u) = [u1| . . . |uk] with ui ∈ TxX and C is the unit
cube. When we take f(P (u)) (which looks very much like Tf(P (u))) we can ask
what the area is with respect to ω. Our answer comes from the pullback.

If P (u) is a very very small parallelepipid near x ∈ X, we can take f(P (u)) and
ask what “area” this k-dimensional object has with respect to a k-form ω near
f(x). The answer is approximately f ∗ωx(u1, . . . , uk) up to a very small error.

Definition 2.57. (Exterior Derivative) The exterior derivative d : Ω(X) → Ω(X)
is the unique map satisfying the following axioms.

(a) (Linearity) If α, β ∈ Ω(X) and c ∈ R, then:

d(cα) = c(dα) d(α + β) = dα + dβ

(b) (0-Forms) If f ∈ Ω0(X) then df is defined as so. A map smooth f : X → R
induces a bundle map Tf : TX → f ∗TR ' X × R. This map is the same as
a section of Hom(TX,R) = T ∗X. df is defined to be this section.

(c) (Leibniz Rule) If α ∈ Ωj(X) and β ∈ Ωk(X), then:

d(α ∧ β) = dα ∧ β + (−1)jα ∧ dβ

Note that d(Ωk(X)) ⊂ Ωk+1(X), that is d increases the degree of a form by 1.

44



Figure 9: A diagram explaining Remark 2.55. Here we have a 3-manifold X (on
the right) and a 2-manifold Y , along with a map f : X → Y and a 2-form ω on
Y . The point x ∈ X maps to f(x) ∈ Y , and there is an induced map of tangent
spaces Tf : TxX → Tf(x)Y . To get the value of f ∗ωx on the blue and green vectors
ug, ub ∈ TxX, we simply apply the Tf map to these two vectors and then evaluate
ωf(x) on the result. This is what is occuring in the picture. Note that the green and
blue vectors get sent to the same place, so the plane that they span is degenerate
and thus f ∗ω evaluates to 0 on the pair.

The exterior derivative can be thought of in many ways. It provides a natural
co-chain complex structure to the differential forms, yielding a version of manifold
homology (see §3.4). Relatedly, one can think of the exterior derivative as being
the adjoint to the boundary map via the integration pairing via Stokes theorem (see
Theorem 2.63).

Definition 2.58. (Lie Derivative) The Lie derivative L : Γ(TX) × Ω(X) → Ω(X)
is the unique map satisfying the following axioms.

(a) (Linearity) if α, β ∈ Ω(X), u, v ∈ Γ(TX) and c ∈ R, then:

Lu+vα = Luα + Lvα Lv(α + β) = Lvα + Lvβ Lcvα = Lv(cα) = cLvα

(b) (0-Forms) If f ∈ Ω0(X) and v ∈ Γ(TX) then Lvf = ιvdf or Lvf = df(v).

(c) (Leibniz Rule) If α, β ∈ Ω(X) and v ∈ Γ(TX) then:

Lv(α ∧ β) = Lvα ∧ β + α ∧ Lvβ

(d) (Exterior Derivative) d and L commute, in the snese that for any v ∈ Γ(TX)
and any ω ∈ Ω(X):

d(Lvω) = Lv(dω)
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Note that, for any vector-field v, Lv(Ω
k(X)) ⊂ Ωk(X), so the Lie derivative preserves

the degree of any differential form.

The Lie derivative Lvω with respect to a vector-field v is best understood using
(what we are calling) the fundamental identity of the Lie derivative.

Proposition 2.59. Let X be a compact manifold, let v ∈ Γ(TX) be a vector-field,
let ω ∈ Ω(X) be a differential form and let Φt : X × [0, ε) → X be any ambient
isotopy satisfying d

dt
(Φt)|t=0 = v. The following are equal.

(a) (Algebraic Lie Derivative) The Lie derivative Lvω of Definition 2.58.

(b) (Infinitesimal Pullback) The time-derivative d
dt

(Φ∗tω)|t=0 of the time-dependent
family of differential forms Φ∗tω.

(c) (Cartan’s Magic Formula) The anti-commutator of interior product and exte-
rior derivative: d(ιvω) + ιv(dω).

Proof. Verify that (b) and (c) above both satisfy Properties (a)-(d) in Definition
2.58. The result then follows from the fact that the Lie derivative is uniquely
characterized by these properties.

Our last topic of discussion in this chapter will be integration.

Definition 2.60. (Integration) Let X = (X, o) be a compact oriented n-manifold
with boundary and let µ ∈ Ωn(X) be an n-form on X. We define the integral

∫
X
µ

as so.
First, consider any µ ∈ Ωn(Rn) such that µ is 0 outside of a compact subset of

Rn. The exterior derivatives {dxi}ni=1 form a basis of the cotangent space T ∗pRn at
each point p ∈ Rn, and thus dx1 ∧ · · · ∧ dxn spans (point-wise) the fiber of Λn

pRn.
It follows that any µ can be written as µ = fdx1 ∧ · · · ∧ dxn for some smooth
f : Rn → R. Note that f must also be 0 outside of a compact subset of Rn. Thus
we define the integral of µ to be the integral of f , i.e:∫

Rn

µ =

∫
Rn

fdx1 ∧ · · · ∧ dxn :=

∫
Rn

fdx1 . . . dxn

Pick any finite open cover {Ui}ni=1 of charts (Ui, ϕi) on X such that ϕ∗i oRn = o.
Here oRn = [dx1 ∧ · · · ∧ dxn] is the canonical orientation on Rn. Pick a partition
of unity {ψi} on X supported on Ui: this is, by definition, a set of smooth maps
ψi : X → R such that:

(a) ψi is 0 away from a compact subset of Ui.

(b) 0 ≤ ψi(x) ≤ 1 for any x ∈ X.
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(c)
∑

i ψi(x) = 1 for any x ∈ X.

Then we define the integral of µ over X to be:∫
X

µ :=
∑
i

∫
Rn

(ϕ−1
i )∗(ψi · µ)

Proposition 2.61. The integral
∫
X
µ depends only on X, o and µ, and not on the

choices of Ui, ϕi or ψi.

Motivation 2.62. To give the reader some idea of why Proposition 2.61 is true, we
consider the following. Let µ ∈ Ωn(Rn) be an n-form that is 0 outside of a compact
set and let ϕ : Rn → Rn be a diffeomorphism preserving the standard orientation
oRn , with ϕ(x) = (ϕi(x))ni=1 (ϕi are the component functions) and ϕi(x) = yi being
the new coordinates.

We know that µ = fdy1 ∧ dyn for a smooth function f : Rn → R. If we compute
the integral of µ in the x coordinates instead of the y coordinates, we see that:∫

Rn

µ = intRnf(y1, . . . , yn)dy1 . . . dyn =

∫
Rn

f(ϕ1(x), . . . , ϕn(x))| det(dϕ)|dx1 . . . dxn

=

∫
Rn

ϕ∗f · | det(dϕ)|dx1 ∧ · · · ∧ dxn =

∫
Rn

ϕ∗f · ϕ∗(dy1 ∧ · · · ∧ dyn) =

∫
Rn

ϕ∗µ

Here we use the following facts. First, the change of coordinates formula for an
integral. Second, the fact that for an orientation preserving diffeomorphism Rn →
Rn, the determinant det(dϕ) is positive and thus equal to its absolute value. Third,
the fact that:

ϕ∗(dx1 ∧ . . . dxn) = det(dϕ) · dy1 ∧ . . . dyn
This is related to Exercise 2.26(c). Fourth, we use the fact that ϕ∗α∧ϕ∗β = ϕ∗(α∧β)
(if α is a function, this just reduces to multiplication).

The above discussion essentially shows that different choices of chart map ϕi in
Definition 2.60 do not effect the integral.

The key result about integration on manifolds is the following.

Theorem 2.63. (Stokes Theorem) Let X = (X, oX) be an oriented n-manifold.
Let ∂X = (∂X, o∂X) be the boundary, oriented with the boundary orientation o∂X ,
and let ι : ∂X → X denote inclusion. Finally, let ω ∈ Ωn−1(X) be an (n− 1)-form.
Then: ∫

∂X

ι∗ω =

∫
X

dω
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3 Manifold Homology

This section will be an introduction to homology. Homology theory in its various
incarnations is one of the most fundamental tools in modern topology. It possesses
a unique combination of simplicity, usefulness and ubiquity that is difficult to ap-
preciate when one first learns about it. We will only be scratching the surface in
these notes.

Here is how this section is organized. In §3.1, we will introduce the algebraic
definition of homology and cohomology, and we give the motivation for where these
algebraic properties come from. In §3.2-3.4, we give several examples of homology
theories: singular homology in §3.2, simplicial homology in §3.3 and de Rham coho-
mology in §3.4. In these sub-sections, we will also discuss the relationships between
these theories.

3.1 What Is Homology?

At the most basic level, homology is a straight forward algebraic construction. Be-
fore we state the definition for this construction, we give a motivational “derivation”
of the properties of chain complexes and their homology groups.

Motivation 3.1. (Groups Of Sub-Manifolds) Let X be a manifold. We will now
describe an informal construction of homology. Warning: The contents of this
section are very non-rigorous. They should be used purely for conceptual aid.

We want to understand X by extracting quantitative information from it. That
means we want to calculate some numerical or algebraic invariant from X, something
that is essentially determined by the isomorphism class (i.e., diffeomorphism type) of
X, but preferably something that isn’t trivial. One way of understanding an object
is to understand maps into or out of the object. This is sort of a mathematical meta-
principle; it applies in a multitude of contexts. In our case, we can try to understand
the collection Map(−, X) of pairs (Σ, ι) where Σ is a connected, compact manifold
with boundary and ι : Σ→ X is a smooth map5.

We can build an algebraic object out of Map(−, X) in a naive way by making a
“chain group” generated by all of the objects in Map(−, X).

C(X;F2) = F2 ·Map(−, X)

Here F2 = Z/2Z is the field of 2 elements and F2 ·Map(−, X) denotes the group of
formal linear combinations of finitely many elements of Map(−, X) with coefficients

5The collection of pairs (Σ, ι) of a compact manifold with boundary Σ and a map ι : Σ → X
is very much not a set. There is a “set of sets” problem here. This is immaterial for motivational
purposes.
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in F2. Now we have an algebraic object, but it is much to big to be useful: it would
be ideal if our construction produced a group that was finite in some sense, perhaps
finitely generated or even literally finite as a set.

To reduce the size C(X;F2), we take advantage of the following two pieces of
structure that arise naturally from the geometry of our setup.

(a) (Grading) We can decompose C(X;F2) into pieces corresponding to manifolds
of a fixed dimension. For each i ∈ Z, let Map(−, X; i) denote the collection
of pairs (Σ, ι) in Map(−, X) such that dim(Σ) = i. These sets are empty for
i < 0. Then we certainly have a direct sum decomposition of the form:

C(X;F2) = F2 ·Map(−, X) =
⊕
i∈Z

F2 ·Map(−, X; i) =
⊕
i∈Z

Ci(X;F2)

Here we define Ci(X;F2) as the group of formal sums of (Σ, ι) ∈ Map(−, X; i):

Ci(X;F2) := F2 ·Map(−, X; i)

(b) (Boundary) Recall that the boundary ∂Σ of a compact manifold with bound-
ary Σ is a compact manifold without boundary. Furthermore, we can restrict
any smooth map on Σ to a map on ∂Σ. Thus there is a natural “boundary”
map ∂ : Ci(X;F2)→ Ci−1(X; ∂F2). Namely, we define:

∂(Σ, ι) :=
∑
i

(∂Σi, ι|∂Σi
) and ∂(Σ, ι) := 0 if ∂Σ is empty

Here ∂Σ = ti∂Σi where Σi are the components of the boundary ∂Σ. We
extend this map to the rest of the group by linearity. This map extends to a
map ∂ : C(X;F2)→ C(X;F2).

The boundary map has several special properties. First of all, we can interpret
the kernel and image of ∂ geometrically. An element x ∈ ker(∂ : Ci(X;F2)→
Ci−1(X;F2) must be a sum of i-dimensional pairs (Σ, ι) where Σ is boundari-
less. On the other hand, an element y ∈ im(∂ : Ci+1(X;F2)→ Ci(X;F2) must
be a sum of i-dimensional pairs (Σ, ι|∂Σ) that are collectively the boundary
of some sum of (i+ 1)-dimensional pairs. Since boundaries of manifolds with
boundary are themselves without boundary, we know that:

im(∂) ⊂ ker(∂) or equivalently ∂2 = 0

With the above additional structure in hand, we now define our parred down
groups Hi(X;F2) by the expression:

Hi(X;F2) = ker(∂ : Ci(X;F2)→ Ci−1(X;F2)/ im(∂ : Ci+1(X;F2)→ Ci(X;F2))
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The idea here is that these groups are spanned by closed sub-manifolds of X (really,
maps of such manifolds into X) subject to the relation that two sums are the same
if their union bounds a higher-dimensional manifold with boundary.

There are many issues with the precise theory that we have outlined here. For
instance, if (Σ, ι), (Σ′, ι′) ∈ Map(−, X), and we have a diffeomorphism ϕ : Σ → Σ′

such that ι = ι ◦ϕ, then should (Σ, ι) and (Σ′, ι′) really represent different elements
of C(X;F2)? If so, it certainly feels like we’re seriously overcounting something6.
Relatedly, it is not clear that we have solved the size problem that we originally set
out to fix! Regardless, making this motivational discussion rigorous is the basic idea
behind some of the simplest versions of homology.

Figure 10: This is a picture of two elements of ker(∂) as described above (the sum of
the green and blue curves and the sum of the red, orange and yellow curves) along
with the relation imposed by the fact that they mutually bound an surface.

We now move on to the actual, algebraic definition of homology and cohomology.
The definition should make some sense with the above motivation in mind.

Definition 3.2. (Chain Complexes) A chain complex (C, ∂) is a pair of an abelian
group C, the chain group, and a group homomorphism ∂ : C → C, the differen-
tial. This pair must satisfy:

(a) (Grading) The chain group C decomposes as a direct sum C = ⊕i∈ZCi.

(b) (Differential) The differential satisfies ∂(Ci) ⊂ Ci−1 and ∂2 = 0.

A chain map or morphism of chain complexes f : (C, ∂) → (D, ∂) is a map of
abelian groups such that:

(a) (Grading) f respects the direct sum decomposition: f(Ci) ⊂ Di.

(b) (Differential) f commutes with the differential: ∂f = f∂.

6This is related to the previous footnote about Map(−, X) not being a set.
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Definition 3.3. (Homology) The homology H(C, ∂) of a chain complex (C, ∂) is
the quotient abelian group defined as:

H(C, ∂) := ker(∂)/ image(∂)

The homology also has a direct sum decomposition H(C, ∂) = ⊕i∈ZHi(C, ∂) with:

Hi(C, ∂) := ker(∂ : Ci → Ci−1)/ image(∂ : Ci+1 → Ci)

Given an a ∈ ker(∂), we denote the image under the quotient ker(∂) → H(C, ∂)
as [a]. In this situation, we say that a is a representative of [a] and we refer to
[a] ∈ H(C, ∂) as a cohomology class. If [a] ∈ Hi(C, ∂), we say that [a] is degree
i and use the notation deg([a]) = i.

The induced map H(f) : H(C, ∂) → H(D, ∂) of a chain map f : (C, ∂) →
(D, ∂) is defined, for any homology class [a] and representative a, to be:

H(f)[a] = [f(a)]

There is a dual notion called cohomology that arises naturally in several contexts
(see §3.4 for instance). The definition is very similar to Definition 3.3, but we state
it in full for maximum clarity.

Definition 3.4. (Cochain Complexes) A cochain complex (C, d) is a pair of an
abelian group C, the cochain group, and a group homomorphism d : C → C, the
differential. This pair must satisfy:

(a) (Grading) The chain group C decomposes as a direct sum C = ⊕i∈ZCi.

(b) (Differential) The differential satisfies ∂(Ci) ⊂ Ci+1 and d2 = 0.

A (co)chain map or morphism of cochain complexes f : (C, d)→ (D, d) is a map
of abelian groups such that:

(a) (Grading) f respects the direct sum decomposition: f(Ci) ⊂ Di.

(b) (Differential) f commutes with the differential: df = fd.

Definition 3.5. (Cohomology) The cohomology H(C, d) of (C, d) is the quotient
abelian group defined as:

H(C, d) := ker(d)/ image(d)

The cohomology also has a direct sum decomposition H(C, d) = ⊕i∈ZH i(C, d) with:

H i(C, d) := ker(d : Ci → Ci+1)/ image(d : Ci−1 → Ci)
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Given an a ∈ ker(d), we denote the image under the quotient ker(d) → H(C, d)
as [a]. In this situation, we say that a is a representative of [a] and we refer to
[a] ∈ H(C, d) as a cohomology class. If [a] ∈ H i(C, d), we say that [a] is degree
i and use the notation deg([a]) = i.

The induced map H(f) : H(C, d) → H(D, d) of a chain map f : (C, d) →
(D, d) is defined, for any cohomology class [a] and representative a, to be:

H(f)[a] = [f(a)]

Exercise 3.6. Here are some exercises about homology. For these exercises, suppose
that (C, ∂) is a chain complex where Ci is a vector-space over a field F and ∂ is F-
linear.

(a) Give an example of a chain complex (C, ∂) which is non-trivial but which has
trivial homology, i.e. where H(C, ∂) = {0} even though C 6= {0}. Give an
example of a chain complex (C, ∂) where H(C, ∂) ' C.

(b) Define the dual cochain complex (Č, ∂̌) of (C, ∂) as so:

Či := (Ci)
∗ and ∂̌ : Či → Či+1 given by ∂̌α := α ◦ ∂ = ∂∗α

(i) Show that ∂̌2 = 0, so that this truly defines a cochain complex.

(ii) Show that a chain map f : (C, ∂) → (D, ∂) induces a cochain map
f̌ : (Ď, ∂̌)→ (Č, ∂̌).

(iii) Show that the dual pairing Ci×Či → F descends to a well-defined pairing
Hi(C, ∂)×H i(Č, ∂̌)→ F.

To clarify, we have a map Ci × Či → F given by (a, α) 7→ α(a). You
need to show that if [a] ∈ Hi(C, ∂) is represented by a ∈ ker(∂|Ci

) and
[α] ∈ H i(Č, ∂̌) is represented by α ∈ ker(∂̌|Či), then α(a) only depends
on the classes [α] and [a] (and not on the representatives) so that the
map Hi(C, ∂)×H i(Č, ∂̌)→ F given by ([a], [α]) 7→ α(a) is well-defined.

The same construction works if we replace F with a ring R. In that situation,
we define the dual (Ci)

∗ as (Ci)
∗ := HomR(Ci, R), the module of R-linear

maps from the module Ci to R.

(c) Suppose that dim(Ci) < ∞ for every i and dim(Ci) = 0 for all but finitely
many i. The Euler characteristic χ(C, ∂) of (C, ∂) is then defined to be:

χ(C, ∂) =
∑
i

(−1)i dim(Ci)
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Show that χ(C, ∂) is also given by the expression:

χ(C, ∂) =
∑
i

(−1)i dim(Hi(C, ∂))

So it only depends on the homology of (C, ∂).

3.2 Singular Homology

In this section, we define the most basic version of the homology of a manifold,
namely singular homology Hsg(X;R) with coefficients in a ring R. Singular ho-
mology can be viewed as a rigorous version of the non-rigorous construction in
Motivation 3.1, where the nth chain group is generated by maps from a specific
n-manifold-like object, namely the n-simplex ∆n, instead of maps from any n-
dimensional manifold with boundary.

In this sub-section, we define singular homology and discuss some of its important
properties. We will also discuss the homological version of orientations.

Notation 3.7. (Simplices) We adopt the following notation throughout this section.
We denote by ∆n the n-simplex, which we realize as the following subspace of Rn+1:

∆n := {x = (x0, . . . , xn) ∈ Rn+1|xi ≥ 0 for all i and
∑
i

xi = 1}

For each i ∈ {0, . . . , n} we denote by ιni : ∆n−1 → ∆n the inclusion given by:

ιni (x0, . . . , xi−1, xi, xn) := (x0, . . . , xi−1, 0, xi, . . . , xn)

We will require the following Lemma. The proof is a direct computation.

Lemma 3.8. As maps ∆n−2 → ∆n, we have ιni ◦ ιn−1
j = ιnj ◦ ιni−1.

We are already prepared to state the definition of singular homology!

Definition 3.9. (Singular Homology) Let R be a ring and let X be a topological
space. The singular homology ofX withR coefficients, Hsg(X;R) = ⊕∞i=0H

sg
i (X;R),

is defined to be the homology of the singular chain complex (Csg(X;R), ∂) with
R coefficients. The singular cohomology of X with R coefficients, Hsg(X;R) =
⊕∞i=0H

i
sg(X;R), is defined to be the cohomology of the dual complex (Csg(X,R), d) =

(Čsg(X;R), ∂̌) of (Csg(X;R), ∂) (see Exercise 3.6).
The complex (Csg(X;R), ∂) of X is defined as so. Let Map(∆n, X) denote the

set of continuous maps from the n-simplex ∆n to X. The chain group Csg(X;R) =
⊕∞n=0C

sg
n (X;R) is defined as:

Csg
n (X;R) := R ·Map(∆n, X)
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The group on the right denotes formal linear combinations of maps σn : ∆n → X.
That is, an element x ∈ Csg

n (X;R) is of the form:

x =
k∑
j=1

cj · σnj

Here σnj : ∆n → X is a continuous map and cj ∈ R for all j ∈ {1, . . . , k}. The
differential ∂ : Csg

n (X;R)→ Csg
n−1(X;R) is defined on any σn ∈ Map(∆n;X) by:

∂(σn) :=
n∑
i=0

(−1)iσn ◦ ιni

By linearity, this extends to a map ∂ : Csg(X;R)→ Csg(X;R).

Lemma 3.10. The map ∂ : Csg(X;R)→ Csg(X;R) satisfies:

∂(Csg
i (X;R)) ⊂ Csg

i−1(X;R) and ∂2 = 0

Thus Definition 3.9 does actually define a chain complex.

Proof. The fact that ∂(Csg
i (X;R)) ⊂ Csg

i−1(X;R) is immediate from the definition.
To check ∂2 = 0, we just need to check that ∂2(σn) = 0 for any σn ∈ Map(∆n;R).
To do this, let I = {0, . . . , n} × {0, . . . , n− 1} and let J = {(i, j)|j < i}. Using the
definition of ∂, we can compute the following:

∂2(σn) = ∂(
n∑
i=0

(−1)iσn ◦ ιni ) =
n−1∑
j=0

n∑
i=0

(−1)i+jσn ◦ ιni ◦ ιn−1
j

=
∑

(i,j)∈J

(−1)i+j(σn ◦ ιni ◦ ιn−1
j + (−1)σn ◦ ιnj ◦ ιn−1

i−1 ) = 0

Here we use Lemma 3.8, which implies that σn◦ιni ◦ιn−1
j = σn◦ιnj ◦ιn−1

i−1 as maps.

Now that we have defined singular homology and cohomology groups, let us turn
to a discussion some of the key properties that the groups themselves have. These
properties are often all one needs to be a user of singular homology.

Proposition 3.11. (Properties Of Singular Homology) Singular homology and sin-
gular cohomology have the following properties.

(a) (Maps) A continuous map f : X → Y induces a map of R-modules f sg
∗ :

Hsg
i (X;R)→ Hsg

i (X;R) and a map f ∗sg : H i
sg(Y ;R)→ H i

sg(X;R).
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(b) (Composition) If g : X → Y and f : Y → Z are continuous maps, then
(f ◦ g)sg

∗ = f sg
∗ g

sg
∗ and (f ◦ g)∗sg = g∗sgf

∗
sg.

(c) (Homotopy Invariance) If f : X → Y and g : X → Y are homotopic, then the
maps of homology and cohomology are equal: f sg

∗ = gsg
∗ and f ∗sg = g∗sg.

(d) (Dual Pairing) There is a dual pairing between cohomology and homology:

H i(X;R)×Hi(X;R)→ R ([α], [a]) 7→ 〈[α], [a]〉 := α(a)

This pairing yields an isomorphism H i(X;R) ' (Hi(X;R))∗ when R is a field.

(e) (Products/Kunneth) Let F is a field. Then there is a natural isomorphism:

Hsg
i (X × Y ;F) '

⊕
j+k=i

Hsg
j (X;F)⊗Hsg

j (Y ;F)

H i
sg(X × Y ;F) '

⊕
j+k=i

Hj
sg(X;F)⊗Hj

sg(Y ;F)

These isomorphisms are compatible with the pushforward and pullback maps
in the following sense: given manifolds Xi, Yi and maps fi : Xi → Yi for
i ∈ {0, 1}, we have:

(f0 × f1)∗sg = (f0)∗sg ⊗ (f1)∗sg

(f0 × f1)sg
∗ = (f0)sg

∗ ⊗ (f1)sg
∗

Proof. (Partial) We will prove (a) and (b). We will provide pictures for (c) and
(e) in Motivation, but the proofs are too involved to go in to in these notes. In
particular, (c) requires a discussion of chain homotopies. (d) is a consequence of
Exercise 3.6(a)(iii).

To prove (a) and (b), we construct a chain map associated to f : X → Y :

Csg(f) : Csg(X, ∂)→ Csg(Y, ∂)

This chain map is defined as so: for any continuous map σ : ∆n → X, i.e. a
generator of Csg

n (X;R), we define Csg(f) by left composition:

Csg(f)σ := f ◦ σ

Then we extend the map to Csg
n (X;R) by linearity. Csg(f) clearly preserves the

direct sum decomposition, and it commutes with ∂ since:

Csg(f)∂σ = Csg(f)(
n∑
i=0

(−1)iσ ◦ ιni ) =
n∑
i=0

(−1)iCsg(f)(σ ◦ ιni )
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=
n∑
i=0

(−1)if ◦ σ ◦ ιni =
n∑
i=0

(−1)i(Csg(f)σ) ◦ ιni = ∂Csg(f)σ

We have thus shown that C(f) is a chain map. We define f sg
∗ and f ∗sg to be the

induced map on homology and the induced map of the dual map on cohomology
(see Exercise 3.6(a)(ii)). This proves (a), while (b) follows from the definition since:

Csg(f)Csg(g)σ = f ◦ g ◦ σ = Csg(f ◦ g)σ

Note that both properties ultimately come down to the fact that map composition
is associative.

Motivation 3.12. (Homotopy Invariance) We now provide an intuitive explanation
for the property in Proposition 3.11(c) in terms of Motivation 3.1.

Recall that in the intuitive picture of Motivation 3.1, a homology class [Σ, ι] ∈
Hn(X;F2) is an equivalence class of maps ι : Σ → X from a closed manifold X,
where any two representatives (Σ0, ι0) and (Σ1, ι1) must be related in the following
way: there exists an (n+1)-manifold Y and a map j : Y → X such that ∂Y = Σ0tΣ1

and j|Σi
= ιi.

Now imaging that we had two maps f0, f1 : X → Y homotopic via a map
f : X × [0, 1] → Y , (x, t) 7→ ft(x). In Proposition 3.11, we defined the maps on
homology induced by fi using left composition with fi. In terms of Motivation 3.1,
this means a representative (Σ, ι) of [Σ, ι] ∈ Hn(X;F2) is sent to (Σ, fi ◦ ι). Showing
that these two representatives mutually bound something is simple: we simply take
Y = Σ × [0, 1] and define j = f ◦ κ. Here f : X × [0, 1] → Y is the homotopy
and κ : Σ × [0, 1] → X × [0, 1] is given by κ(σ, t) = (ι(σ), t). This clearly gives a
bounding (Y, j) for the pair (Σ0, f0 ◦ ι) and (Σ1, f1 ◦ ι), so that:

(f0)∗[Σ, ι] = [Σ, f0 ◦ ι] = [Σ, f1f ◦ ι] = (f1)∗[Σ, ι]

See Figure 3.2 below for a drawing of the situation that we describe here.

We now move on to a discussion of (homological) orientations and their proper-
ties. An orientation of this form turns out to be the same data as the information
of a section of the orientation bundle (see Proposition 2.33(5)), although arguing
this requires the introduction of relative homology and thus is beyond the scope of
these notes.

Definition 3.13. (Orientations) A closed n-manifold X is orientable if the n-th
singular homology group satisfies Hsg

n (X;Z) ' Z. An orientation of X is a choice
of generator [X] of Hsg

n (X;Z) as an abelian group. The generator [X] is also referred
to as a fundamental class of X.

An oriented manifold is a pair (X, [X]) of a manifold X and an fundamental
class [X] of X. In general, we suppress the orientation in the notation for an oriented
manifold. A smooth map f : X → Y is orientation preserving if f∗[X] = [Y ].
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Figure 11: A depiction of how a homotopy of maps f : X × [0, 1]→ Y from X to Y
yields an object bounding f0(ι(Σ)) and f1(ι(Σ)), namely the cylinder over Σ that is
traced out by the homotopy.

Motivation 3.14. (Fundamental Classes) Using the intuition of Motivation 3.1,
we want to think of a fundamental class [X] of X as a closed sub-manifold of X
that is the same dimension as X itself. In fact, we should think of the class [X] as
representing X itself.

The fundamental class also makes one of the key intuitions from Motivation 3.1
rigorous. Namely, we want to think of a homology class [a] as being represented
by a map ι : Σ → X of k-dimensional closed manifold Σ into X. We can use the
fundamental class to (almost) realize this idea via the following result of Thom.

Proposition 3.15. (c.f. [5]) Let X be a manifold and let [a] ∈ Hsg
k (X;Z) be an

integral homology class. Then there exists an oriented closed k-manifold Σ, a map
ι : Σ→ X and a k ∈ Z+ such that ιsg∗ [Σ] = k[a].

3.3 Simplicial Homology

While singular homology groups are very easy to define, it is quite difficult to com-
pute them using only Definition 3.9. A remedy for this is to define different homology
groups that are easier to calculate directly from the definition, but which end up be-
ing isomorphic in the end. This computational utility comes at a price, however. It
is much more difficult to directly demonstrate the many nice properties that singular
homology possesses (see Proposition 3.11) directly for simplicial homology.

In this sub-section, we will explain how to define the simplicial homology of
a very combinatorial object called a simplicial complex7. In §??, we will explain
how to turn a simplicial complex into a topological space, and how the simplicial
homology of the set is related to the singular homology of the space.

7We will use our own definition of simplicial complex. There are many definitions that are
equivalent for the most part
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Definition 3.16. (Simplicial Complex) A simplicial complex S = (F,4, dim, σ)
consists of the following data8:

(a) A finite, partially ordered set (F,4) called the facet set.

(b) An order preserving function dim : F → Z+ ∪ {0} called the dimension.

(c) An injective map σfe : {0, . . . , dim(e)} → {0, . . . , dim(f)} for each e, f ∈ P
with e 4 f , called the gluing map from e to f .

The poset and gluing maps must satisfy the following properties:

- (Facet Closure And Uniqueness) For every f ∈ F and S ⊂ {0, . . . , dim(f)},
there exists a unique e ∈ F such that e 4 f and image(σfe ) = S.

- (Consistency) σee = Id and σge = σgf ◦ σfe for any e, f, g ∈ F with e 4 f 4 g.

Definition 3.17. (Simplicial Homology) Let R be a ring and let S be a simpli-
cial complex. The simplicial homology of S with R coefficients, Hsp(S;R) =
⊕∞i=0H

sp
i (S;R), is defined to be the homology of the simplicial chain complex

(Csp(S;R), ∂) with R coefficients. The singular cohomology of S with R coef-
ficients, Hsp(S;R) = ⊕∞i=0H

i
sp(S;R), is defined to be the cohomology of the dual

complex (Csp(S;R), d) = (Čsp(S;R), ∂̌) of (Csp(S;R), ∂) (see Exercise 3.6).
The complex (Csp(S;R), ∂) is defined a so. Set Csp(S;R) = ⊕nCsp

n (S;R) to be:

Csp
n (S;R) := R · {f ∈ F | dim(f) = n}

The group on the right denotes formal linear combination of faces f ∈ F with
dim(f) = n with R coefficients. The differential ∂ : Csp

n (S;R) → Csp
n−1(S;R) is

defined on any f with dim(f) = n as:

∂(f) =
∑

dim(e)+1=dim(f)
e4f

sign(σfe ) · e

Here the sign of a map σ : {0, . . . , d} → {0, . . . , d + 1} is defined to be the sign (as
a permutation) of the unique permutation σ̄ : {0, . . . , d + 1} → {0, . . . , d + 1} with
the property that σ̄(i) = σ(i− 1) for all i > 0.

Lemma 3.18. The map ∂ : Csp(S;R)→ Csp(S;R) satisfies:

∂(Csp
i (S;R)) ⊂ Csp

i−1(S;R) and ∂2 = 0

Thus Definition 3.17 does actually define a chain complex.
8This is a slightly non-standard definition of an abstract simplicial complex. We use this

definition to emphasize the precise combinatorial data needed to compute simplicial homology.
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Proof. As with Definition 3.9, the fact that ∂(Csp
i (S;R)) ⊂ Csp

i−1(S;R) is immediate.
To show that ∂2 = 0, we can show that ∂2(f) = 0 for any f ∈ F . We compute that:

∂2(f) = ∂
( ∑

dim(e)+1=dim(f)
e4f

sign(σfe ) · e
)

=
∑

dim(d)+2=dim(f)
d≺e≺f

sign(σed) · sign(σfe ) · d

In the latter sum, d appears once for every chain d ≺ e ≺ f where dim(d) + 2 =
dim(e) + 1 = dim(f). Due to the closure and uniqueness property of the facet set
F of S in Definition 3.16, such chains are in bijection with chains of subsets:

image(σfd ) ⊂ S ⊂ {0, . . . , dim(f)}

where |S| = dim(e) + 1 = dim(f) and (of course) | image(σfd )| = dim(d) + 1 =
dim(f)−1. There are clearly two such subets, and by Lemma 3.19 the corresponding
coefficients of these two d terms cancel.

Lemma 3.19. Consider injections of the form:

σed, σ
f
d : {0, . . . , n} → {0, . . . , n+ 1}

σge , σ
g
f : {0, . . . , n+ 1} → {0, . . . , n+ 2}

Suppose that σge ◦ σed = σgf ◦ σ
f
d and image(σge) 6= image(σgf ). Then:

sign(σge) · sign(σed) = − sign(σgf ) · sign(σfd )

Proof. Recall that the sign map sign : Σn+1 → {±1} from permutations of {0, . . . , n}
to {±1} is a group homomorphism. Using this, we can deduce that if ρ : {0, . . . , n} →
{0, . . . , n} and τ : {0, . . . , n + 1} → {0, . . . , n + 1} are permutations and σ :
{0, . . . , n+ 1} → {0, . . . , n+ 2} is an injection, we have the multiplication property:

sign(τ ◦ σ ◦ ρ) = sign(τ) · sign(σ) · sign(ρ)

Here the signs of τ and ρ are as permutations and the sign of σ is by our definition.
Now if we let τe, τf and τg be permutations such that:

τe ◦ σed(i) = i+ 1 τf ◦ σfd (i) = i+ 1 τg ◦ σge ◦ τ−1
e (i) = i+ 1

Then by the multiplication property, it suffices to verify our result where we make
the replacements:

σed =⇒ τe ◦ σed σfd =⇒ τf ◦ σfd
σge =⇒ τg ◦ σge ◦ τ−1

e σgf =⇒ τg ◦ σgf ◦ τ
−1
f
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It is simple to check that under our assumptions, this reduces us to the case where:

σed(i) = σfd (i) = i+ 1 σge(i) = i+ 1 σgf (i) =

{
0 if i = 0

i+ 1 otherwise

Computing signs using the definition stated in 3.17 yields:

sign(σed) = sign(σfd ) = sign(σge) = 1 sign(σgf ) = −1

This verifies the desired result in this case and concludes the proof.

Although the definitions are very different, there is a relationship between sim-
plicial and singular homology. It turns out that, in the regimes where these theories
overlap, they produce isomorphic groups. At this point, it is probably quite diffi-
cult to understand what we mean by this: singular homology groups are associated
to spaces while simplicial homology groups are associated to simplicial complexes.
Thus we must first explain how to take a simplicial complex and turn it into a space.

Definition 3.20. The geometric realization XS of a simplicial complex S is the
space constructed as so. For each f ∈ F , we associate a copy ∆f of the dim(f)-
dimensional simplex ∆dim(f). Given any e 4 f , the gluing map σfe induces a map
∆e → ∆f given by:

(x0, . . . , xdim(e)) 7→ (y0, . . . , ydim(f)) yi =

{
xj i = σfe (j)
0 else

By abuse of notation, we denote this map by σfe : ∆e → ∆f . Finally, define XS by:

XS :=
( ⊔
f∈F

∆f
)
/ ∼

Here ∼ is the equivalence relation defined to be the transitive closure of the relation
x ∼ y if and only if σge(x) = σgf (y) for e, f, g ∈ F with e 4 g and f 4 g. Note that

each facet f ∈ F is associated to a continuous map σf : ∆dim(f) → XS given by:

σf : ∆dim(f) ' ∆f ↪→ tf∈F∆f → XS

Here the last map is the obvious quotient map.

We can now state a result relating the simplicial homology of S and the singular
homology of XS. We will not include a proof of this result, although a part of the
proof will be given as an exercise.
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Proposition 3.21. (Simplicial Of S ' Singular Of XS) Let S = (F,4, dim, σ) be
a simplicial complex with geometric realization XS. Then the map Csp(S;R) →
Csg(XS;R) defined on a generator f ∈ F of Csp(S;R) to be:

f ∈ F 7→ (σf : ∆dim(f) → XS) ∈ Map(∆dim(f), XS)

is a chain map (see Definition 3.2). Furthermore, the induced map yields a canonical
isomorphism:

SPS : Hsp(S;R) ' Hsg(XS;R)

Of course, this result isn’t that interesting to us unless we can expect to apply it
to manifolds on a regular basis. The question of whether or not every manifold can
be made using a simplicial complex has many variants, some of which were open
until very recently. The following result is most relevant to us and is quite old.

Theorem 3.22. (c.f. [1],[7]) Let X be a compact smooth manifold with boundary
has a simplicial complex S such that XS and X are homeomorphic.

These two results together allow us to utilize simplicial homology to compute
singular homology. We will compute some examples this way later in this section,
and in some exercises.

Exercise 3.23. We will now compute the simplicial homology of several spaces.

(a) Compute the simplicial homology of the circle using the following simplicial
complex S with XS ' S1, depicted in Figure 3.3 below. Here the left-hand side
gives the facet set, the dimensions of each facet, and the gluing maps in the
form of a labeled graph. The right-hand side shows the geometric realization.

(b) Compute the simplicial homology of the 2-sphere using the simplicial structure
of the boundary of a 3-simplex. Feel free to ask for more details.

(c) Determine a simplicial complex S whose geometric realization is RP 2 and
use it to compute the homology if RP 2. (Hint: RP 2 is the quotient of the
upper-hemisphere of S2 in R3 by some identification of oposite points on the
boundary of the hemisphere. Give a similar description in terms of a square
based pyramid.)

3.4 De Rham Cohomology

In this section, we define de Rham cohomology. We have already seen all of the
ingredients for this theory, so the definition is extremely fast! On the other hand,
he proof that this theory is related to the others from §3.2 and §3.3 is too difficult
for us to discuss here, although we will give an overview of this fact in Theorem
3.26.
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Figure 12: A simplicial complex for the circle.

Definition 3.24. (De Rham Cohomology) Let X be a closed manifold. The de
Rham cochain complex is the cochain complex (Ω(X), d). Here the cochain
group is the vector-space Ω(X) = ⊕ni=0Ωi(X) of differential forms and the differential
d : Ω(X) → Ω(X) is the exterior derivative (see Definition 2.57). The de Rham
cohomology H i

dR(X) is the cohomology:

H i
dR(X) := H i(Ω(X), d)

As we did in Proposition 3.11, we now turn to a discussion some of the key
properties of de Rham cohomology. These properties are very similar to those in
Proposition 3.11, and this is no accident: as we will see later.

Proposition 3.25. (Properties Of De Rham Cohomology) De Rham cohomology
has the following properties.

(a) (Maps) A smooth map f : X → Y induces a linear map f ∗dR : H i
dR(Y ) →

H i
dR(X) given in terms of the pullback f ∗ : Ω(Y )→ Ω(X) by:

f ∗dR[ω] = [f ∗ω]

(b) (Composition) If g : X → Y and f : Y → Z are smooth maps then:

(f ◦ g)∗dR = g∗dRf
∗
dR
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(c) (Homotopy Invariance) If f : X → Y and g : X → Y are smoothly isotopic,
then the maps of de Rham cohomology are equal: f ∗dR = g∗dR.

(d) (Dual Pairing) Given any oriented closed k-manifold Σ and smooth map ι :
Σ→ X, the linear map H i

dR(X)→ R given by:

[ω] 7→
∫

Σ

ι∗ω

is well-defined (indpendent of the representative ω of [ω]) and thus defines an
element [Σ, ι] ∈ (H i

dR(X))∗.

(e) (Products/Kunneth) Let F is a field. Then there is a natural isomorphism:

H i
dR(X × Y ) '

⊕
j+k=i

Hj
dR(X)⊗Hj

dR(Y )

For a pure tensor [α] ⊗ [β] ∈ Hj
dR(X) ⊗ Hj

dR(Y ), this isomorphism can be
written explicitly as:

[α]⊗ [β] 7→ [π∗Xα ∧ π∗Y β]

Given closed manifolds Xi, Yi and maps fi : Xi → Yi for i ∈ {0, 1}, we have:

(f0 × f1)∗dR = (f0)∗dR ⊗ (f1)∗dR

Proof. (Partial) We will prove most of this proposition. However, we skip the proof
of (e) since it is (again) a bit too technical to go in to. It is nice to see, however,
that the formula for (e) is so explicit in this case.

We have already done the work for (a). Namely, we proved that f ∗(dω) = d(f ∗ω)
and that f ∗ : Ωi(Y )→ Ωi(X), so that it preserves the grading. Thus f ∗ is a (co)chain
map and induces a map f ∗dR : H i

dR(Y ) → H i
dR(X). The composition property (b)

follows from the fact that g∗f ∗ω = (f ◦ g)∗ω.
Now we prove (c). Unlike in Proposition 3.11, we have the tools to do it. Let

h : X × [0, 1]→ Y be an isotopy between f = h0 and g = h1 and let ω be a closed
k-form on Y . We need to show that f ∗ω− g∗ω = dα for some α ∈ Ωk−1(Y ). By the
isotopy extension theorem, we can find an ambient isotopy j : Y × [0, 1]→ Y such
that ht = jt ◦h0 = jt ◦ f for any t ∈ [0, 1] and j0 = Id. By the composition property
(b), we know that f ∗ω = j∗0f

∗ω and g∗ω = j∗1f
∗ω. Redefining ω to be f ∗ω, and h

itself to be j, we can thus reduce to the case where X = Y and h : X → X is an
ambient isotopy.

Under this simplifying assumption, we proceed as so. Let Z be the time-
dependent vector-field defined implicitly by the equation:

dht
dt
|t=s = Zs ◦ hs
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We can compute the following identity for the time-derivative of h∗tω in terms of Zs.

d

dt
(h∗tω)|t=s = LZsh

∗
sω = ιZsd(h∗sω) + d(ιZsω) = d(ι∗Zs

ω)

Here we use the fundamental identity of the Lie derivative, Cartan’s magic formula
and the closedness of ω. We can then integrate to see that:

g∗ω − f ∗ω = h∗1ω − h∗0ω =

∫ 1

0

d(ιZsω)dt = d(

∫ 1

0

ιZsωdt) = dσ

This concludes the proof of (c).
The dual pairing property (d) follows from Stoke’s theorem. In particular, if [ω]

is represented by ω and ω′, then:∫
Σ

ι∗ω − ι∗ω′ =
∫

Σ

ι∗(ω − ω′) =

∫
Σ

d(ι∗σ) =

∫
∂Σ

ι∗σ = 0

This concludes the parts of the proof that we set out to do.

We now turn to the relationship between de-Rham and singular cohomology. We
don’t have to do any preparatory work here to state the relevant result. There is
already a regime in which both theories are well-defined, namely on closed manifolds.

Theorem 3.26. (De Rham) Let X be a closed manifold. Then there is a natural
isomorphism:

DRX : H i
dR(X) ' H i

sing(X;R)

This isomorphism has the following properties.

(a) (Pullback) DR is compatible with pullback in the sense that if f : X → Y is
a smooth map of closed manifolds, then:

f ∗sg ◦DRY = DRX ◦ f ∗dR

(b) (Dual Pairing) DR is the following sense. If Σ is a closed, oriented manifold
and ι : Σ→ X is smooth, then:

〈DRX([ω]), ι∗sg[Σ]〉 = 〈ι∗dR[ω], [Σ, ι]〉 =

∫
Σ

ι∗ω

(b) (Product) DR is compatible with the Kunneth isomorphism in the sense that
if X and Y are closed manifolds, then:

DRX([α])×DRY ([β]) = DRX×Y (π∗X [α] ∧ π∗Y [β]) ∈ H i
sing(X × Y ;R)
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Exercise 3.27. Here are some exercises about de Rham cohomology.

(a) Show that the wedge product ∧ : Ω(X)⊗Ω(X)→ Ω(X) descends to a product
on the de Rham cohomology. That is the product:

[α]⊗ [β] 7→ [α ∧ β]

gives a well-defined bilinear product on HdR(X).

4 Symplectic And Contact Geometry

In this section, we finally get to the objective of these notes: a discussion of elemen-
tary symplectic and contact geometry.

4.1 Translating Hamiltonian Mechanics

The first step will be to translate the theory of Hamiltonian mechanics as described
in §1.1-1.2 into manifold theoretic language. Thus we return, after our long wayward
journey, so the realm of §1. This translation can be summarized in the following
table, which we elaborate on below.

Hamiltonian Mechanics Symplectic Geometry

phase space R2n = Rn
x × Rn

p symplectic manifold X

bilinear form ω0 = 〈J ·, ·〉 symplectic form ω ∈ Ω2(X)
Hamiltonian H ∈ C∞(R2n) Hamiltonian H ∈ Ω0(X)

gradient ∇H ∈ C∞(R2n,R2n) exterior derivative dH ∈ Ω1(X)
vector-field −J∇H ∈ C∞(R2n,R2n) Hamiltonian vector-field XH s.t. ιXH

ω = dH

Hamilton’s equation dγ
dt

= −J∇H ◦ γ Hamilton’s equation dγ
dt

= XH ◦ γ
time evolution R× R2n → R2n Hamiltonian flow ΦH : R×X → X

We now discuss the parts of this table. First, we look for a replacement for the
phase spaces Rn

x × Rn
p in manifold land: the clear candidates are just manifolds of

dimension 2n. Similarly, the trajectories of particles γ : R → Rn
x × Rn

p should be
relaced with maps γ : R→ X and the flow ΦH : Rn

x ×Rn
p ×Rt → Rn

x ×Rn
p given by

“flowing by time t” should be replaced with an ambient isotopy ΦH : X × R→ X.
The gradient of a Hamiltonian energy function H : X → R should be replaced with
the differential dH : TX → X × R (since this is the coordinate invariant version of
the gradient, or at-least its dual) and the Hamiltonian vector-field XH that satisfied
XH = −J∇H should be replaced by a vector-field XH .
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Now we look for a replacement for the bilinear form 〈J ·, ·〉. Recall the roll that
this played in Hamiltonian mechanics in regular phase space. Namely, we could
define the Hamiltonian vector-field XH implicitly via the equation:

〈∇H, v〉 = 〈JXH , v〉 for any v ∈ Rn
x × Rn

p

Our goal is to find a replacement ω for ω0 that shares any properties of ω0 that are
coordinate independent (meaning that we can be stated in the context of a manifold,
without reference to any particular chart).

If we let X = Rn
x × Rn

p write this as an equation on the tangent space TX at a
point x ∈ X and using v ∈ TxX, dH,XH and ω0, this says that:

dHx(v) = ω0(XH
x , v)

In other words, the replacement ω for ω0 on X needs to be a bilinear pairing TX ⊗
TX → X ×R at each point. Furthermore, the pairing must have the following two
properties that ω0 has, both of which can be stated independent of chart.

(a) ω must be non-degenerate as a pairing on each fiber TxX⊗TxX → R, meaning
that for any x ∈ X and non-zero u ∈ TxX there exists a v ∈ TxX such that
ωx(u, v) 6= 0. This certainly holds for ω0, since if u = −Jv then:

ω0(u, v) = 〈Ju, v〉 = 〈−J2v, v〉 = 〈v, v〉 > 0

(b) ω must be anti-symmetric, meaning ωx(u, v) = −ωx(v, u). This is also a
property that ω0 has:

ω0(u, v) = 〈Ju, v〉 = vTJu = (vTJu)T = uTJTv = −uTJv = −ω0(v, u)

The final property that ω must have is tied to the way that it is preserved by
the Hamiltonian flow. One can easily check that ω0 is preserved by the flow in the
sense that:

ω0(dΦt(u), dΦt(v)) = ω0(u, v) for any u, v ∈ Rn
x × Rn

p

4.2 Symplectic Manifolds

In this section, we formalize the discussion above in §4.1. We define symplectic
manifolds, Hamiltonians and their vector-fields,

Definition 4.1. (Symplectic Manifolds) A symplectic 2n-manifold (X,ω) is a
pair of a 2n-manifold X and 2-form ω ∈ Ω2(X) such that:

(a) ω is closed, i.e. dω = 0.
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(b) The 2n-form ωn is a volume form, i.e. ωn 6= 0 fiber-wise.

The 2-form ω is called the symplectic form or symplectic structure.

For the remainder of this section, let (X,ω) be a symplectic manifold.

Definition 4.2. (Hamiltonians) A Hamiltonian H on X is a smooth function
H : X → R. A time-dependent Hamiltonian is a function H : X × U → R
where U ⊂ R is some (open or closed) interval of R. A time-dependent Hamiltonian
H : X × R → R is T -periodic if Ht+T (x) = Ht(X) for all (x, t) ∈ X × R. In that
case we can interpret H as a map H : X × R/TZ→ R.

The Hamiltonian vector-field XH of a Hamiltonian H : X × U → R is the
unique time-dependent vector-field (i.e. section of π∗XTX over X ×U) that satisfies
ι(XH

t )ω = dHt for each t. Any time-dependent Hamiltonian H : X × R → R
generates a family of diffeomorphisms ΦH : X × R→ R given by:

dΦH

dt
|t=s = XHs ◦ ΦH

s and ΦH
0 = Id

When H is time-independent, this is called the Hamiltonian flow of H.

Definition 4.3. (Maps Of Symplectic Manifolds) Let (X0, ω0) and (X1, ω1) be sym-
plectic manifolds.

(a) A symplectic diffeomorphism or symplectomorphism ϕ : X0 → X1 is a
diffeomorphism satisfying ϕ∗ω1 = ω0

(b) A Hamiltonian diffeomorphism ϕ : X0 → X1 is a symplectomorphism
such that there exists a Hamiltonian H : X × [0, 1]→ R with ϕ = ΦH

1 .

Example 4.4. Here are some examples of symplectic manifolds.

(a) (Phase Space) Euclidean space R2n = Rn
x × Rn

p , with coordinates xi, pi for
i ∈ {1, . . . , n}, is symplectic with symplectic form ω0 =

∑n
i=1 dxi ∧ dpi

(b) (Surfaces) Let Σ be an orientable surface. Then Λ2Σ is trivial, so we can pick
a non-vanishing section ω ∈ Ω2(Σ) = Γ(Λ2X). This non-vanishing section is
automatically closed, since ΛkX = X × {0} for k > dim(X). Furthermore, ω
is non-degenerate since 2n = 2 and thus ωn = ω is a volume form as long as
it’s non-vanishing. Thus (Σ, ω) is symplectic.

We now provide some non-examples of symplectic manifolds. In order to do so,
we provide a very basic example of the interaction between the topology of X and
the symplectic geometry of X in the form of the following lemma.
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Lemma 4.5. Let (X,ω) be a closed symplectic manifold. Then X is orientable and
H2(X;R) 6= {0}.

Proof. X must be orientable, since ωn ∈ Ω2n(X) is a non-vanishing section of Λ2nX,
so Λ2nX and thus oX must be trivial.

To see that H2(X;R) 6= {0}, consider the de-Rham cohomology class [ω] ∈
H2

dR(X) represented by the symplectic form ω. It suffices to show that [ω] 6= 0
due to the isomorphism DRX : H2

dR(X) ' H2(X;R). Pick a fundamental class
[X] ∈ Hn(X;Z).

〈[ω]n, [X]〉 = 〈[ωn], [X]〉 =

∫
X

ωn

Since ωn is nowhere vanishing, the integral must be either strictly positive or strictly
negative. However, if [ω] = 0 then [ω]n = 0 and so 〈[ω]n, [X]〉 = 0. So [ω] 6= 0.

Example 4.6. Here are some non-examples of symplectic manifolds, meaning man-
ifolds that cannot be given a symplectic form. The primary tool here is Lemma 4.5.

(a) S2n for n ≥ 2. We computed in Section 3 that:

H i(Sn;R) '
{

Z if i = n, 0
{0} else

In particular, H2(S2n;R) ' {0} if n ≥ 2, so Lemma 4.5 says that S2n can’t
be symplectic.

(b) S2m × S2n for m,n ≥ 2. By the Kunneth formula, we have:

H2(S2m × S2n;R) ' (H2(S2m;R)⊗H0(S2n;R))

⊕(H1(S2m;R)⊗H1(S2n;R))⊕ (H1(S2m;R)⊗H2(S2n;R))

In each tensor product above, one of the terms is {0}, so each of the summands
is isomorphic to {0}. Thus the whole group is {0}.

Exercise 4.7. The following exercises are about symplectic linear algebra, i.e. the
linear algebra of symplectic vector-spaces.

A symplectic vector-space (V, ω) is a vector-space V along with a non-
degenerate, anti-symmetric bilinear form ω : V × V → R. This is, equivalently,
an element ω ∈ Λ2(V ∗). Let (V, ω) be a symplectic vector-space for the remain-
der of these notes. We let (R2n, ω0) denote R2n with the standard symplectic form
ω0(u, v) = v · (Ju) with:

J =

[
0 −I
I 0

]
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(a) Let U ⊂ V be a sub-space. The symplectic perpendicular Uω is the sub-
space given by:

Uω = {w ∈ V |ω(w, u) = 0 for all u ∈ U}

(i) Prove that dim(Uω) + dim(U) = dim(V ).

(ii) Show that (Uω)ω = U .

(b) Let U ⊂ V be a sub-space. Then we say that:

- U is symplectic if (U, ω|U) is a symplectic vector-space.

- U is isotropic if ω|U = 0, i.e. if ω(u, v) = 0 for all u, v ∈ U .

- U is coisotropic if ω|Uω = 0, i.e. if ω(u, v) = 0 for all u, v ∈ Uω.

- U is Lagrangian if U is both isotropic and coisotropic.

Show that if U is symplectic, then dim(U) is even; if U is isotropic then
dim(U) ≤ dim(V )/2; if U is coisotropic then dim(U) ≥ dim(U)/2; and if U
is Lagrangian then dim(U) = dim(V )/2. (Hint: for the symplectic case, use
induction).

(c) Show that, for any (V, ω), there exists a linear map A : V → R2n such that
ω(u, v) = ω0(Au,Av).

(d) Let n = dim(V )/2. Show that ωn (the nth wedge power of ω) is non-zero as
an element of Λ2n(V ∗).

(e) Let L,U ⊂ V be sub-spaces of V with dim(L) = 1 and dim(U) = dim(V )− 1.
Show that L is isotropic and V is coisotropic.

4.3 Contact Manifolds

We now turn to a discussion of contact manifolds. We first discuss general hyper-
surfaces (in particular, level sets of Hamiltonians) in symplectic manifolds. We then
specialize to contact hypersurfaces and discuss contact manifolds in general. We
give some examples and state some open problems.

We observed in §1.3 that many of the properties of Hamiltonian dynamics on
an energy surface in phase space are determined by the surface, not the Hamilto-
nian. This observation extends to general symplectic manifolds, in the sense that
many dynamical properties on a Hamiltonian hypersurface are determined by the
characteristic line bundle on that surface. We now define that object.
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Definition 4.8. (Characteristic Line Bundle) Let (X,ω) be a symplectic 2n-manifold
and let ι : Y → X be an embedding of a (2n − 1)-manifold Y . Consider the sub-
bundle TY ⊂ ι∗TX. We may form a sub-bunde TY ω ⊂ ι∗TX whose fiber at y ∈ Y
is the symplectic perpendicular to TyY in ι∗TXy with respect to ω. By Exercise 4.7,
we have TY ω ⊂ TY , so that this forms a 1-dimensional sub-bundle of TY . We call
this sub-bundle the characteristic line bundle of Y .

Lemma 4.9. If Y = H−1(E) where H : X → R is a smooth Hamiltonian and H
is a submersion on Y (i.e. dHy 6= 0 for any y ∈ Y ) then the vector-field XH on Y
spans the characteristic line distribution TY ω at every point.

Proof. Suppose that XH is the Hamiltonian vector-field of the Hamiltonian H :
X → R. Then by definition dH = ιXHω. In particular, for any point y and any
v ∈ TyY , ωy(X

H
y , v) = dHy(v) = 0 because the tangent space at y to a level set

Y = H−1(E) of H is the kernel of the differential dHy at y. Thus XH ∈ TY ω. Since
TY ω is 1-dimensional (by Exercise 4.7) and XH is non-zero (since ιXH

ω = dH and
dH is nowhere 0 on Y ) we know that TY ω = span(XH).

One of the big questions we would like to understand is which hypersurfaces have
orbits on them and which do not. This is a quite subtle question. Hofer-Zehnder
showed in [3] that almost all level sets of a smooth proper function H : R2n → R
carry at least one periodic orbit. Similar properties hold for cotangent bundles.
However, one can find Hamiltonians on T 2n that have no periodic orbits on entire
intervals of energy values (see [2]).

In 1979, Weinstein proposed a geometric condition for a hypersurface that con-
jecturally guarantees the existence of periodic orbits in [6], inspired by an existence
result of Rabinowitz for boundaries of star-shaped domains.

Definition 4.10. Let (X,ω) be a symplectic manifold. An embedded (2n − 1)-
dimensional hypersurface Y ⊂ X is contact type if there exists a vector-field Z in
a neighborhood U of Y so that Z is transverse to Y (i.e. Zp 6∈ TpY for any p ∈ Y )
and LZω = ω. Z is called the Liouville vector-field.

Example 4.11. The boundaries of certain star-shaped domains satisfy this prop-
erty: if X ⊂ R2n is star-shaped with respect to 0 (meaning any line segment between
0 and a point p on the boundary of X is in X) and is transverse to the radial vector-
field Z given by Z(z) = 1

2
z (meaning Zz 6∈ Tz(∂Y ) for any z ∈ ∂Y ) then Y is contact

type with respect to the symplectic form ω0, and Z satisfies LZω0 = ω0 since:

LZω0 = d(ιZ(
∑
i

dxi∧dyi)) = d(
1

2

∑
i

xidyi−yidxi) =
1

2
(
∑
i

dxi∧dyi−dyi∧dxi) = ω0
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There is an entirely intrinsic characterization of hypersurfaces Y that captures
the information of being a contact hypersurface without reference to the ambient
symplectic manifold X. This charactrization gives rise to the definition of a contact
manifold.

Definition 4.12. A contact 2n+1-manifold (Y, ξ) is a pair of a (2n−1)-manifold
Y and a 2n-dimensional sub-bundle ξ ⊂ TY ssatisfying one of the following (equiv-
alent) conditions:

(a) ξ is maximally non-integrable: any embedded sub-manifold Σ ⊂ Y with TΣ ⊂
ξ (that is, tangent to ξ at any point s ∈ Σ) satisfies dim(Σ) ≤ n.

(b) ξ is the kernel bundle of a contact form on Y . A contact form α is a 1-form
α ∈ Ω1(Y ) such that α ∧ dαn 6= 0.

When one has a contact form on a contact manifold, one can define a naturally
associated vector-field called the Reeb vector-field. In the case where (Y, λ) is a
contact hypersurface (we explain why this is a special case below) the Reeb vector-
field is the Hamiltonian vector-field of a specific Hamiltonian on Y .

Definition 4.13. (Reeb Vector-field) Let (Y, ξ) be a contact manifold with contact
form α. Then the Reeb vector-field R of α is the unique vector-field satisfying
ιRdα = 0 and ιRα = 1.

A periodic Reeb orbit with period L ∈ R+, γ : S1 → Y , is a map satisfying
dγ
dt

= LR◦γ. A periodic orbit is simple if γ is injective. Two orbits are equivalent
if they differ by reparameterization of S1.

Conjecture 4.17 (the Weinstein conjecturee) is that Y always has a closed orbit.

Example 4.14. Here are some examples of contact manifolds.

(a) (Euclidean Space) (R2n+1, α0) whereR2n+1 has coordinates (z, x1, y1, . . . , xn, yn)
and α0 is the standard contact 1-form:

α0 = dz +
∑
i

xidyi

(b) (Spheres) (S2n−1, α) where S2n−1 ⊂ R2n is the unit sphere and α = λ|S2n−1

and λ is the 1-form on R2n given by:

α =
1

2
(
∑
i

xidyi − yidxi)

This is in fact the contact form induced by the Liouville vector-field defined
as Z(z) = 1

2
z for any z ∈ R2n.
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(c) (Contact Type Hypersurfaces) Any contact type hypersurface Y ⊂ X in a
symplectic manifold (X,ω). Here we take α = ιZω|Y . Then we have that
α ∧ dαn (where 2n + 1 = dim(Y )) is equal to ιZω

n|Y which will be non-zero
everywhere when restricted to Y because Z is transverse to Y .

(d) (Unit Cotangent Bundles) Given a metric g on TX, we can use the dual metric
on T ∗X to form the unit cotangent bundle S∗X given fiberwise as the set of
unit covectors with respect to the metric on T ∗X induced by g. This manifold
is a contact hypersurface of the cotangent bundle.

4.4 Classic Theorems

Definition 4.15. (Compatible Open Books) Let Y be a closed (2n + 1)-manifold
with an open book decomposition, i.e. a diffeomorphism Y ' B(P, ϕ) with the
realization of an abstract open book (P, ϕ).

Theorem 4.16.

4.5 Open Problems

For the remainder of this section, let (Y, ξ) be a closed contact (2n + 1)-manifold
with contact form α.

Conjecture 4.17. (Weinstein) Y has a closed Reeb orbit.

Conjecture 4.18. (Stronger Weinstein) Y has n Reeb orbits (maybe with the
assumption that ξ has a non-vanishing section).

Conjecture 4.19. (Viterbo) If Y is the boundary of a convex domain X ⊂ R2n

containing 0 with the induced contact form, then:

min{A(γ)|γ is a Reeb orbit of Y } ≤ vol(Y, α)1/(n+1)

4.6 Symmetries

5 Appendix

5.1 Proofs For Section 2

Proof. (Proposition 2.30) Here is the idea behind this construction: we will con-
struct F (E) as a certain type of quotient space, by taking all of the local trivializa-
tions provided by the vector-bundle axiom, applying the construction of F to each
trivialization, and then gluing it all together. Let us now go into detail.
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(b1) - Constructing F (E): Let π : E → X be a vector bundle of rank k and let
A(E) denote the set of pairs (U,ϕ) where U ⊂ X is an open subset and ϕ : E|U '
U ×Rk is a trivialization of the restriction E|U = π−1(U) of E to U . We now define
the total space of F (E) as the following (rather humongous) quotient.

F (E) =
( ⋃

(U,ϕ)∈A(E)

{ϕ} × U × F (Rk)
)/
∼

The equivalence relation ∼ is defined using the transition maps in the following way.

(ϕ, x, e) ∼ (ψ, y, f) ⇐⇒ x = y and F ([ψx ◦ ϕ−1
x ])(e) = f

Here ϕx : Ex ' {x}×Rk and ψx : Ex ' {x}×Rk are the isomorphisms restricted to
the fibers (which are just vector-space isomorphisms), and F (ψx ◦ ϕ−1

x ) : F (Rk) →
F (Rk) is the map guaranteed to us by the assumptions. The projection map π :
F (E)→ X is defined in the tautological way, by π([ϕ, x, e]) = x.

(b1) - Checking Bundle Axioms: We should check that F (E) satisfies the bundle
axioms. Verifying that the resulting quotient F (E) is a manifold tedious and involves
invoking some general theory about quotients, which we postpone until later in the
notes. Here we will only remark on the axioms given in Definition 2.11(a)-(b).

To see 2.11(a), we define the vector-space structure as so: any pair u, v ∈ F (E)x
can be written as u = [ϕ, x, e] and v = [ϕ, x, f ] as above. Then we define:

u+ v := [ϕ, x, e+ f ]

This doesn’t depend on our choice of ϕ, because for a different choice where u =
[ϕ′, x, e′] and v = [ϕ′, x, f ′] we have e′ = F (ϕ′x ◦ ϕ−1

x )(e) and f = F (ϕ′x ◦ ϕ−1
x )(f),

and therefore by linearity of ϕ′x ◦ ψ−1
x :

(ϕ, x, e+ f) ∼ (ϕ′, x, F (ϕ′x ◦ ϕ−1
x )(e+ f)) = (ϕ′, x, e′ + f ′)

This implies that addition is well-defined. Scalar multiplication is defined in an
identical way. The vector-space axioms follow immediately from the fact that they
hold for the vector-spaces F (Rk).

To see 2.11(b), even less work is necessary. For any x ∈ X, pick a (U,ϕ) ∈ A(E)
such that x ∈ U . Then the map F (E)|U → U × F (Rk) given by:

[ϕ, x, e] 7→ (x, e)

is a diffeomorphism, satisfies has π1(x, e) = x = π([ϕ, x, e]) and is linear on the
fibers, all by construction of F (E) and the vector-space structure on the fibers.

(b2) - Constructing F (f): Let f : D → E be a linear bundle map of fiber
bundles D and E. To define F (f) : F (D) → F (E), we proceed as so. We need to
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define two maps: the map of total spaces F (f) : D → E and the map of base spaces
F (f) : X → Y . We define the base map F (f) to be the same as f . To define the
total space map F (f), we use property (b4). Namely, we define F (f) fiberwise as
the composition:

F (f)|Dx : F (D)x ' F (Dx)
F (fx)−−−→ F (Ef(x)) ' F (E)f(x)

The only thing that needs to be checked is that F (f) is smooth. By pre and
post composing F (f) with the trivializations of F (D) and F (E) provided by the
definition in (b1), we can reduce this to the case where D and E are trivial. In this
setting, f can be viewed as a smooth map f : X → Hom(Rj,Rk). Furthermore,
there are bundle isomorphisms X×F (Rj) ' F (X×Rj) and Y ×F (Rk) ' F (Y ×Rk).
Using these isomorphisms the map F (f) takes the form:

F (f)(x, u) = (f(x), F (fx)(u))

Since the map F : Hom(Rj,Rk) → Hom(F (Rj), F (Rk)) is smooth and the map
Hom(Rm,Rn) × Rm → Rn given by (A, x) 7→ Ax is (clearly) smooth, the given
expression for F (f) is as well.

(b3) - F Respects Composition: This property follows immediately from the
definition of F (f) that we have provided above.

(b4) - F (E)x ' F (Ex) Canonically: The canonical isomorphism is defined as so:
given a choice of (U,ϕ) ∈ A(E), we have a linear isomorphism ϕx : Ex ' {x}×Rk '
Rk. (a1) and (a2) can be used to deduce that isomorphisms are sent to isomorphisms
by F . Thus, ϕx induces an isomorphism F (ϕx) : F (Ex) ' F (Rk) and we can write
an isomorphism:

F (Ex) ' F (E)x u 7→ [ϕ, x, F (ϕx)u]

This maps is well-defined because of the composition property F (f◦g) = F (f)◦F (g).

(ϕ, x, F (ϕx)u) ∼ (ϕ′, x, F (ϕ′x ◦ ϕ−1
x )F (ϕx)u) = (ϕ′, x, F (ϕ′x)u)

Thus any two choices of ϕ in the definition of the isomorphism F (Ex) ' F (E)x
yield the same element of F (E)x.

Proof. The reader will notice that the statement of this proposition is very similar
to Proposition 2.30. Indeed, the construction is very similar!

(a) - Object Map: Let X be a smooth manifold with (maximal) atlas A(X). An
element (U,ϕ) of A(X) is a chart, i.e. a pair of an open U ⊂ X and a homeomor-
phism ϕ : U ' ϕ(U) ⊂ Rk with an open subset ϕ(U) of Rn. We assume here that n
is fixed independent of the chart (for simplicity). We define TX to be the quotient:

TX =
( ⋃

(U,ϕ)∈A(X)

{ϕ} × U × Rn
)/
∼
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The equivalence relation ∼ is defined using the transition maps in the following way.

(ϕ, x, u) ∼ (ψ, y, v) ⇐⇒ x = y and d(ψ ◦ ϕ−1)ϕ(x)(u) = v

Here d(ψ ◦ ϕ−1)ϕ(x) is the Jacobian of the smooth map ψ ◦ ϕ−1 : ϕ(U ∩ V ) →
ψ(U ∩ V ) where U is the domain of ϕ and V is the domain of ψ. The projection
map π : TX → X is defined in the tautological way, by π([ϕ, x, u]) = x.

(b) - Morphism Map: Let f : X → Y be a smooth map. Then we define the
bundle map Tf : TX → f ∗TY as so. The base map Tf : X → X is just the
identity. The total space map Tf is defined by:

Tf([ϕ, x, u]) = (x, [ψ, f(x), d(ψ ◦ f ◦ ϕ−1)ϕ(x)(u)]) ∈ f ∗TY ⊂ X × TY

Here x ∈ X, and the charts (U,ϕ) ∈ A(X) and (V, ψ) ∈ A(Y ) are chosen such that
x ∈ U and f(x) ∈ V , respectively.

(c) - Composition: This is a straight forward calculation. Let g : X → Y ,
f : Y → Z, and x ∈ X. Pick a (α, U) ∈ A(X), (β, V ) ∈ A(Y ) and (κ,W ) ∈ A(Z)
so that x ∈ U, g(x) ∈ V and f(g(x)) ∈ W , respectively. Then we can compute f ∗Tg
on the fiber f ∗TYx as:

g∗Tf(x, [β, g(x), u]) = (x, [κ, f(g(x)), d(κ ◦ f ◦ β−1)β(x)(u)])

Using this identity, we can calculate the following identity for T (f ◦ g) at x.

T (f ◦ g)([α, x, u]) = (x, [κ, f ◦ g(x), d(κ ◦ f ◦ g ◦ α−1)α(x)(u)])

= (x, [κ, f(g(x)), d(κ ◦ f ◦ β−1)β(g(x)) ◦ d(β ◦ g ◦ α−1)α(x)(u)])

= g∗Tf(x, [β, g(x), d(β ◦ g ◦ α−1)α(x)(u)]) = g∗Tf ◦ Tg([α, x, u])

(d) - TV Is V × V On Vector-Spaces: Let V be a vector-space. We define a
bundle isomorphism V × V ' TV as:

(x, v) 7→ [L, x, dLx(v)]

Here L : V ' Rn is any linear isomorphism of V with Rn, considered as the map in
the chart (L, V ) ∈ A(V ). The fact that this doesn’t depend on L is easily verified
using the definition of TV .

(e) - Tf Is Jacobian On Vector-Spaces: Let U and V be vector-spaces, and let
L : V ' Rm and K : V ' Rn be linear isomorphisms. For concreteness we briefly
adopt the notation Φ : U × U ' TU and Ψ : V × V ' TV for the isomorphisms of
(d). Using the definition of Tf , we see that:

Tf ◦ Φ(x, v) = Tf([L, x, dLx(v)])

= (x, [K, f(x), d(K ◦ f ◦ L−1)LxdLx(v)]) = f ∗Ψ(x, dfx(v))

This concludes the proof.
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5.2 Implicit And Inverse Function Theorems

Here we state our versions of the inverse and implicit function theorems. We prove
the latter using the former.

Theorem 5.1. (Inverse Function Theorem) Let f : P → Q be a smooth map
of open subsets P ⊂ V an Q ⊂ W of vector-spaces V and W , and assume that
det(dfp) 6= 0. Then there exists a neighborhoods A of p in P and B of f(p) in Q
such that f |A : A ' B is smooth with a smooth inverse g : B ' A.

We can prove the implicit function theorem using Theorem 5.1 as so.

Theorem 5.2. (Implicit Function Theorem) Let f : P → Q be a smooth map of
open subsets P ⊂ U ⊕ V and Q ⊂ W , where U, V and W are vector-spaces. Let
p ∈ P and let q = f(p) ∈ Q. Suppose that dfp|V : V → W is a vector-space
isomorphism. Then there exists a neighborhood A ⊂ U⊕V , a neighborhood B ⊂ P
of p and a diffeomorphism g : A ' B such that g(A ∩ (U ⊕ 0)) = B ∩ f−1(q).

Proof. We may assume that P = U ⊕ V and Q = W , since this simplifies the
notation and the proof is identical otherwise. Let h : U ⊕ V → U ⊕W be the map
h(u⊕ v) = u⊕ f(u⊕ v). Then dhp : U ⊕ V → U ⊕W breaks into block form as:

dhp =

[
Id 0
dfp|U dfp|V

]
Since dfp|V : V → W is an isomorphism, the differential dhp above has full rank
and is thus invertible (because it is a map between spaces of the same dimension).
The inverse function theorem implies that there exists neighborhoods B ⊂ U ⊕ V
of p and C ⊂ U ⊕W of q = f(p) such that h|B : B ' C is a diffeomorphism with
inverse g : C → B.

Now define A = {u⊕w|w+ f(p) ∈ C} and consider the smooth diffeomorphism
g : A ' B defined to be:

g(u⊕ w) = h|−1
B (u⊕ (f(p) + w))

We can write this map as u 7→ j(u ⊕ w) ⊕ k(u ⊕ w) for smooth j : A → U and
k : A→ V . Using the definition of h, we see that:

h(j(u⊕ 0)⊕ k(u⊕ 0)) = j(u⊕ 0)⊕ f(j(u⊕ 0)⊕ k(u⊕ 0)) = j(u⊕ 0)⊕ f(g(u⊕ 0))

On the other hand, we can compute using the definition of g that:

h(j(u⊕ 0)⊕ k(u⊕ 0)) = h(g(u⊕ 0)) = h(h|−1
B (u⊕ f(p))) = u⊕ f(p)
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This implies that j(u⊕ 0) = u and f(g(u⊕ 0)) = f(p) = q. Thus g(A ∩ (U ⊕ 0)) ⊂
f−1(q) ∩B. On the other hand, if p′ = u′ ⊕ v′ ∈ f−1(q) ∩B, then:

h(p′) = u′ ⊕ f(p′) = u′ ⊕ f(p) =⇒ u′ ⊕ 0 ∈ A

and therefore we know that p′ ∈ g(A ∩ (U ⊕ 0)) since:

g(u′ ⊕ 0) = h|−1
B (u′ ⊕ f(p)) = h|−1

B (h(p′)) = p′

Thus B∩f−1(q) ⊂ g(A∩(U⊕0)) and we must have B∩f−1(q) = g(A∩(U⊕0)).
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