Math 55 Section 101 Quiz 9

Problem 1 Find recurrence relations and initial conditions that define the following sequences.
1.A (3 pt) $a_{n}=\binom{n}{3}$ for $n \geq 3$.

Solution: We can use the recursion $a_{n}=\frac{n!}{3!}(n-3)!=\frac{n}{n-3}\binom{n-1}{3}=\frac{n}{n-3} a_{n-1}$. Initial conditions are $a_{3}=1$.
1.B (3 pt) $a_{n}=$ "The number of sequences of 2 's and 5 's that adds to n " with $n \geq 0$. For instance, $(2,5,2)$ is a sequence of 2 's and 5 's that adds to $n=9$. Hint: You need 5 initial conditions.

Solution: We can use the recursion $a_{n}=a_{n-2}+a_{n-5}$. The initial conditions are just $a_{0}=a_{2}=1$ and $a_{1}=a_{3}=a_{4}=0$.

Problem 2 (3 pt) Consider the sequence a_{n} with generating function $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$, and suppose that a_{n} satisfies the recurrence relation $a_{n}=4 a_{n-2}+1$ with initial conditions $a_{0}=a_{1}=0$. Write down the corresponding equation satisfied by f. (I'm looking for an equation involving f, like $f(x)=x^{5} f(x)+x^{2}$ for example).

Solution: The functional equation is $f(x)=4 x^{2} f(x)+\frac{1}{1-x}-1-x$. Solving we get $f(x)=$ $\frac{x^{2}}{(1-x)(1-2 x)(1+2 x)}$.

Problem 3 (1 pt, Challenge Problem) Consider the sequence a_{n} with generating function $f(x)=$ $\sum_{n=0}^{\infty} a_{n} x^{n}$, and suppose that a_{n} satisfies the recurrence relation $a_{n}=-\frac{\omega^{2}}{n(n-1)} a_{n-2}$. Here ω is just some real number. Assume arbitrary initial conditions (use $a_{0}=a$ and $a_{1}=b$ if you want). Write down the general closed form solution for f.

Solution: The functional equation here ends up bring $\omega^{2} f(x)=f^{\prime \prime}(x)$ (with some contributions from the initial conditions). We can solve this generally with $f(x)=A \sin (\omega x)+B \cos (\omega x) . A$ and B depend on the initial conditions, but since we assumed that the initial conditions are arbitrary they can be anything (so we won't write them in term of the given a_{0} and a_{1}).

