
Math 55 Section 101 Quiz 5

Problem 1 (4 pt) Let T be the set of polynomials with even integer coefficients and even powers of x.

Examples of such polynomials are 2x4 + 6x2 or 16x32 − 2x2 + 2. 2x3 + 4x2 is not allowed because x3 is an

odd power of x. 3x2 + 2 is not allowed because x2 has an odd coefficient. Give a recursive definition

for T . Solution: There are many possible definitions. Here is one.

Base Object: 2 ∈ T .

Recursive Property: If p, q ∈ T then p + q ∈ T, p− q ∈ T and x2p, x2q ∈ T .

Problem 2 The Fibonacci sequence is defined recursively as f0 = 0, f1 = 1 and fi+2 = fi+1 + fi. Using

strong induction, prove the following formula:
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2.A (2 pt) What is “P (n)” in this case?

Solution: I would use P (n) defined as:
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2.B (2 pt) Prove the base case. (Caution: There should be 2 “base cases” in this situation.)

Solution: Here you need to prove P (0) and P (1). We see that:
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2.C (2 pt) Do the induction step (on the back please). Hint: Notice that (1+
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2
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. Solution:

Assume P (k) for k < n. Then by the definition of the Fibonacci sequence and our induction hypothesis

we have:
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Now observe that (1+
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Thus we have verified the induction step.

2


