Math 55 Section 101 Quiz 5

Problem $1(4 \mathrm{pt})$ Let T be the set of polynomials with even integer coefficients and even powers of x. Examples of such polynomials are $2 x^{4}+6 x^{2}$ or $16 x^{32}-2 x^{2}+2.2 x^{3}+4 x^{2}$ is not allowed because x^{3} is an odd power of $x .3 x^{2}+2$ is not allowed because x^{2} has an odd coefficient. Give a recursive definition for T. Solution: There are many possible definitions. Here is one.

Base Object: $2 \in T$.
Recursive Property: If $p, q \in T$ then $p+q \in T, p-q \in T$ and $x^{2} p, x^{2} q \in T$.

Problem 2 The Fibonacci sequence is defined recursively as $f_{0}=0, f_{1}=1$ and $f_{i+2}=f_{i+1}+f_{i}$. Using strong induction, prove the following formula:

$$
f_{n}=\frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right)
$$

2.A (2 pt) What is " $P(n)$ " in this case?

Solution: I would use $P(n)$ defined as:

$$
f_{n}=\frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right)
$$

2.B (2 pt) Prove the base case. (Caution: There should be 2 "base cases" in this situation.)

Solution: Here you need to prove $P(0)$ and $P(1)$. We see that:

$$
\begin{aligned}
& \frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{0}-\left(\frac{1-\sqrt{5}}{2}\right)^{0}\right)=\frac{1}{\sqrt{5}}(1-1)=0=f_{0} \\
& \frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{1}-\left(\frac{1-\sqrt{5}}{2}\right)^{1}\right)=\frac{1}{\sqrt{5}}(\sqrt{5})=1=f_{1}
\end{aligned}
$$

2.C (2 pt) Do the induction step (on the back please). Hint: Notice that $\left(\frac{1+\sqrt{5}}{2}\right)^{2}=1+\frac{1+\sqrt{5}}{2}$. Solution: Assume $P(k)$ for $k<n$. Then by the definition of the Fibonacci sequence and our induction hypothesis we have:

$$
\begin{gathered}
f_{n}=f_{n-1}+f_{n-2}=\frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{n-1}-\left(\frac{1-\sqrt{5}}{2}\right)^{n-1}\right)+\frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{n-2}-\left(\frac{1-\sqrt{5}}{2}\right)^{n-2}\right) \\
\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n-2}\left(\frac{1+\sqrt{5}}{2}+1\right)-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{n-2}\left(\frac{1-\sqrt{5}}{2}+1\right)
\end{gathered}
$$

Now observe that $\left(\frac{1+\sqrt{5}}{2}\right)^{2}=\frac{6+2 \sqrt{5}}{2}=1+\frac{1+\sqrt{5}}{2}$ and similarly $\left(\frac{1-\sqrt{5}}{2}\right)^{2}=\frac{6-2 \sqrt{5}}{2}=1+\frac{1-\sqrt{5}}{2}$. Thus:

$$
\begin{gathered}
f_{n}=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n-2}\left(\frac{1+\sqrt{5}}{2}+1\right)-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{n-2}\left(\frac{1-\sqrt{5}}{2}+1\right) \\
=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n-2}\left(\frac{1+\sqrt{5}}{2}\right)^{2}-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{n-2}\left(\frac{1-\sqrt{5}}{2}\right)^{2} \\
\quad=\frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right)
\end{gathered}
$$

Thus we have verified the induction step.

