Math 55 Section 101 Quiz 5

Problem $1(4 \mathrm{pt})$ Let T be the set of polynomials with even integer coefficients and even powers of x. Examples of such polynomials are $2 x^{4}+6 x^{2}$ or $16 x^{32}-2 x^{2}+2.2 x^{3}+4 x^{2}$ is not allowed because x^{3} is an odd power of $x .3 x^{2}+2$ is not allowed because x^{2} has an odd coefficient. Give a recursive definition for T.

Problem 2 The Fibonacci sequence is defined recursively as $f_{0}=0, f_{1}=1$ and $f_{i+2}=f_{i+1}+f_{i}$. Using strong induction, prove the following formula:

$$
f_{n}=\frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right)
$$

2.A (1 pt) What is " $P(n)$ " in this case?
2.B (2 pt) Prove the base case. (Caution: There should be 2 "base cases" in this situation.)
2.C (2 pt) Do the induction step (on the back please). Hint: Notice that $\left(\frac{1+\sqrt{5}}{2}\right)^{2}=1+\frac{1+\sqrt{5}}{2}$.

