Math 55 Section 101 Quiz 2

Problem 1 (4.1 Q 31) Find each of these values.
1.A $(-133 \bmod 23+261 \bmod 23) \bmod 23$

Answer: $(-133 \bmod 23+261 \bmod 23) \bmod 23=(-133+261) \bmod 23=128 \bmod 23=13 \bmod 23$
1.B $(457 \bmod 23 \cdot 182 \bmod 23) \bmod 23$

Answer: $(457 \bmod 23 \cdot 182 \bmod 23) \bmod 23=-3 \bmod 23 \cdot 21 \bmod 23=-3 \cdot 21 \bmod 23=-63$ $\bmod 23=6 \bmod 23$

Problem 2 (4.2 Q 6) Convert the octal expansion of each of these integers to a binary expansion. How to do this: Use the method that I discussed in section!
2.A (572) ${ }_{8}$ Answer: 101111010
2.B (1604) ${ }_{8}$ Answer: 001110000010
2.C (423) $)_{8}$ Answer: 100010011
2.D (2417) ${ }_{8}$ Answer: 010100001111

Problem 3 (1 pt) (4.1 Q 17) Show that if n and k are positive integers, then $\lceil n / k\rceil=\lfloor(n-1) / k\rfloor+1$. Answer: Let $n=a k+b$ with b between 0 and k. Then:

$$
\lceil n / k\rceil=a+\lceil b / k\rceil=a+1 \text { and }\lfloor(n-1) / k\rfloor+1=\lfloor(a k+b) / k\rfloor+1=a+\left\lfloor\frac{b-1}{k}\right\rfloor+1=a+1
$$

It's important to notice here that the range of b is important, since if it were outside of $\{1, \ldots, k-1\}, b / k$ would not have floor 0 and ceiling 1 .

Problem 4 (1 pt) (4.2 Q 32) Show that a positive integer is divisible by 7 if and only if the sum of its octal digits is divisible by 7. Answer: Let $n=\sum_{i=0}^{k} a_{i} 8^{i}$, so the octal expansion is $\left(a_{k} a_{k-1} \ldots a_{1} a_{0}\right)_{8}$. Then we see that:

$$
n \quad \bmod 7=\left(\sum_{i} a_{i} 8^{i}\right) \quad \bmod 7=\left(\sum_{i}\left(a_{i} \bmod 7\right)\left(8^{i} \bmod 7\right)\right) \quad \bmod 7
$$

Now observe that $8 \bmod 7=1$ because $8=7+1$. Thus:

$$
8^{i} \quad \bmod 7=(8 \quad \bmod 7)^{i} \quad \bmod 7=1^{i} \quad \bmod 7=1 \quad \bmod 7
$$

So we can write the sum from before as so:

$$
\begin{gathered}
n \bmod 7=\left(\sum_{i}\left(a_{i} \bmod 7\right)\left(8^{i} \bmod 7\right)\right) \quad \bmod 7=\left(\sum_{i}\left(a_{i} \bmod 7\right)(1 \bmod 7)\right) \quad \bmod 7 \\
=\sum_{i}\left(a_{i} \bmod 7\right) \quad \bmod 7=\left(\sum_{i} a_{i}\right) \bmod 7
\end{gathered}
$$

In particular, $n=0 \bmod 7$ if and only if $\sum_{i} a_{i}=0 \bmod 7$. Thus n is divisible by 7 if and only if $\sum_{i} a_{i}$ is.

