Problem 1 True or False? If true, justify/prove your answer. If false, give a counter-example. All functions are between real numbers, $\mathbb{R} \to \mathbb{R}$.

1.A (2 pts) $f(x) = x^2 + 1$ is injective. **Answer:** False. f(-1) = f(1) = 2 so the function is many to one.

1.B (2 pts) $g(x) = x^4 - 100$ is surjective. **Answer:** False. $-101 \neq g(x)$ for any x because $g(x) = x^4 - 100 \ge -100$ for any x.

1.C (2 pts) h(x) = -2x + 5 is bijective. **Answer:** True! This function has an inverse given by $h^{-1}(x) = \frac{5-x}{2}$.

1.D (2 pts) A polynomial function p(x) is called *nth order* if the highest power of x that it contains is x^n . For example, $2x^2 + 5$ is 2nd order and $10x^7 + 2x^2 + 1$ is 7th order. True or False: If a polynomial function is \geq 2nd order (that is, 2nd order or higher) then it is *not* injective? **Answer:** False. x^3 is a counter-example because it is injective and degree 3.

Problem 2 (1 pt) (1.8 Q 29) Prove that there is no integer n such that $n^3 + n^2 = 100$.

Answer: Proof by contradiction. Suppose for the sake of contradiction that there did exist such an n. Then $n^2(n+1) = 100 = 5^2 \cdot 2^2$. Then either $n^2 = 2^2$, $n^2 = 5^2$ or $n^2 = 100$, since n^2 must be a square factor of 100. In these cases n = 2, 5 or 10. But if we check cases, we see that if n = 2 then $n^2(n+1) = 4 \cdot 3 = 12 \neq 100$, if n = 5 then $n^2(n+1) = 25 \cdot 6 \neq 100$ and if n = 10 then $n^2(n+1) = 100 \cdot 11 \neq 100$. So none of these cases are possible, meaning that no such n could have existed.

Problem 3 (1 pt) Describe a bijection between $S := \{x \in \mathbb{Z} | x > 0\}$ (non-negative integers) and \mathbb{Z} . **Answer:** Define $f: S \to \mathbb{Z}$ as so. If $m = 2k \in S$ is even or zero, define f(m) = m/2 = k. If m = 2k + 1 is odd, then define $f(m) = -\frac{m+1}{2} = -k$. The inverse is given by the function $g: \mathbb{Z} \to S$ defined as g(k) = 2k for $k \ge 0$ and g(k) = -2k - 1 for k < 0. Since f has an inverse (with $f \circ g: \mathbb{Z} \to \mathbb{Z}$ and $g \circ f: S \to S$ both the identity) f is a bijection.