Math 55 Section 101 Quiz 2 Solutions

Problem 1 True or False? If true, justify/prove your answer. If false, give a counter-example. All functions are between real numbers, $\mathbb{R} \rightarrow \mathbb{R}$.
1.A (2 pts) $f(x)=x^{2}+1$ is injective.

Answer: False. $f(-1)=f(1)=2$ so the function is many to one.
1.B (2 pts) $g(x)=x^{4}-100$ is surjective.

Answer: False. $-101 \neq g(x)$ for any x because $g(x)=x^{4}-100 \geq-100$ for any x.
1.C (2 pts) $h(x)=-2 x+5$ is bijective.

Answer: True! This function has an inverse given by $h^{-1}(x)=\frac{5-x}{2}$.
1.D (2 pts) A polynomial function $p(x)$ is called nth order if the highest power of x that it contains is x^{n}. For example, $2 x^{2}+5$ is 2 nd order and $10 x^{7}+2 x^{2}+1$ is 7 th order. True or False: If a polynomial function is ≥ 2 nd order (that is, 2nd order or higher) then it is not injective?
Answer: False. x^{3} is a counter-example because it is injective and degree 3.

Problem 2 (1 pt) (1.8 Q 29) Prove that there is no integer n such that $n^{3}+n^{2}=100$.
Answer: Proof by contradiction. Suppose for the sake of contradiction that there did exist such an n. Then $n^{2}(n+1)=100=5^{2} \cdot 2^{2}$. Then either $n^{2}=2^{2}, n^{2}=5^{2}$ or $n^{2}=100$, since n^{2} must be a square factor of 100 . In these cases $n=2,5$ or 10 . But if we check cases, we see that if $n=2$ then $n^{2}(n+1)=4 \cdot 3=12 \neq 100$, if $n=5$ then $n^{2}(n+1)=25 \cdot 6 \neq 100$ and if $n=10$ then $n^{2}(n+1)=100 \cdot 11 \neq 100$. So none of these cases are possible, meaning that no such n could have existed.

Problem 3 (1 pt) Describe a bijection between $S:=\{x \in \mathbb{Z} \mid x>0\}$ (non-negative integers) and \mathbb{Z}. Answer: Define $f: S \rightarrow \mathbb{Z}$ as so. If $m=2 k \in S$ is even or zero, define $f(m)=m / 2=k$. If $m=2 k+1$ is odd, then define $f(m)=-\frac{m+1}{2}=-k$. The inverse is given by the function $g: \mathbb{Z} \rightarrow S$ defined as $g(k)=2 k$ for $k \geq 0$ and $g(k)=-2 k-1$ for $k<0$. Since f has an inverse (with $f \circ g: \mathbb{Z} \rightarrow \mathbb{Z}$ and $g \circ f: S \rightarrow S$ both the identity) f is a bijection.

