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Preface

Manifolds crop up everywhere in mathematics. These generalizations of curves and
surfaces to arbitrarily many dimensions provide the mathematical context for un-
derstanding “space” in all of its manifestations. Today, the tools of manifold theory
are indispensable in most major subfields of pure mathematics, and are becoming
increasingly important in such diverse fields as genetics, robotics, econometrics,
statistics, computer graphics, biomedical imaging, and, of course, the undisputed
leader among consumers (and inspirers) of mathematics—theoretical physics. No
longer the province of differential geometers alone, smooth manifold technology is
now a basic skill that all mathematics students should acquire as early as possible.

Over the past century or two, mathematicians have developed a wondrous collec-
tion of conceptual machines that enable us to peer ever more deeply into the invisi-
ble world of geometry in higher dimensions. Once their operation is mastered, these
powerful machines enable us to think geometrically about the 6-dimensional solu-
tion set of a polynomial equation in four complex variables, or the 10-dimensional
manifold of 5 x 5 orthogonal matrices, as easily as we think about the familiar
2-dimensional sphere in R3. The price we pay for this power, however, is that the
machines are assembled from layer upon layer of abstract structure. Starting with the
familiar raw materials of Euclidean spaces, linear algebra, multivariable calculus,
and differential equations, one must progress through topological spaces, smooth at-
lases, tangent bundles, immersed and embedded submanifolds, vector fields, flows,
cotangent bundles, tensors, Riemannian metrics, differential forms, foliations, Lie
derivatives, Lie groups, Lie algebras, and more—just to get to the point where one
can even think about studying specialized applications of manifold theory such as
comparison theory, gauge theory, symplectic topology, or Ricci flow.

This book is designed as a first-year graduate text on manifold theory, for stu-
dents who already have a solid acquaintance with undergraduate linear algebra, real
analysis, and topology. I have tried to focus on the portions of manifold theory that
will be needed by most people who go on to use manifolds in mathematical or sci-
entific research. I introduce and use all of the standard tools of the subject, and
prove most of its fundamental theorems, while avoiding unnecessary generalization
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or specialization. I try to keep the approach as concrete as possible, with pictures
and intuitive discussions of how one should think geometrically about the abstract
concepts, but without shying away from the powerful tools that modern mathemat-
ics has to offer. To fit in all of the basics and still maintain a reasonably sane pace,
I have had to omit or barely touch on a number of important topics, such as complex
manifolds, infinite-dimensional manifolds, connections, geodesics, curvature, fiber
bundles, sheaves, characteristic classes, and Hodge theory. Think of them as dessert,
to be savored after completing this book as the main course.

To convey the book’s compass, it is easiest to describe where it starts and where
it ends. The starting line is drawn just after topology: I assume that the reader has
had a rigorous introduction to general topology, including the fundamental group
and covering spaces. One convenient source for this material is my Introduction to
Topological Manifolds [LeeTM], which I wrote partly with the aim of providing the
topological background needed for this book. There are other books that cover sim-
ilar material well; I am especially fond of the second edition of Munkres’s Topology
[MunOO]. The finish line is drawn just after a broad and solid background has been
established, but before getting into the more specialized aspects of any particular
subject. In particular, I introduce Riemannian metrics, but I do not go into connec-
tions, geodesics, or curvature. There are many Riemannian geometry books for the
interested student to take up next, including one that I wrote [LeeRM] with the goal
of moving expediently in a one-quarter course from basic smooth manifold theory
to nontrivial geometric theorems about curvature and topology. Similar material is
covered in the last two chapters of the recent book by Jeffrey Lee (no relation)
[LeeJeff09], and do Carmo [dC92] covers a bit more. For more ambitious readers,
I recommend the beautiful books by Petersen [Pet06], Sharpe [Sha97], and Chavel
[Cha06].

This subject is often called “differential geometry.” I have deliberately avoided
using that term to describe what this book is about, however, because the term ap-
plies more properly to the study of smooth manifolds endowed with some extra
structure—such as Lie groups, Riemannian manifolds, symplectic manifolds, vec-
tor bundles, foliations—and of their properties that are invariant under structure-
preserving maps. Although I do give all of these geometric structures their due (after
all, smooth manifold theory is pretty sterile without some geometric applications),
I felt that it was more honest not to suggest that the book is primarily about one or
all of these geometries. Instead, it is about developing the general tools for working
with smooth manifolds, so that the reader can go on to work in whatever field of
differential geometry or its cousins he or she feels drawn to.

There is no canonical linear path through this material. I have chosen an order-
ing of topics designed to establish a good technical foundation in the first half of
the book, so that I can discuss interesting applications in the second half. Once the
first twelve chapters have been completed, there is some flexibility in ordering the
remaining chapters. For example, Chapter 13 (Riemannian Metrics) can be post-
poned if desired, although some sections of Chapters 15 and 16 would have to be
postponed as well. On the other hand, Chapters 19-21 (Distributions and Foliations,
The Exponential Map, and Quotient Manifolds, respectively) could in principle be



Preface vii

inserted any time after Chapter 14, and much of the material can be covered even
earlier if you are willing to skip over the references to differential forms. And the
final chapter (Symplectic Manifolds) would make sense any time after Chapter 17,
or even after Chapter 14 if you skip the references to de Rham cohomology.

As you might have guessed from the size of the book, and will quickly confirm
when you start reading it, my style tends toward more detailed explanations and
proofs than one typically finds in graduate textbooks. I realize this is not to every
instructor’s taste, but in my experience most students appreciate having the details
spelled out when they are first learning the subject. The detailed proofs in the book
provide students with useful models of rigor, and can free up class time for dis-
cussion of the meanings and motivations behind the definitions as well as the “big
ideas” underlying some of the more difficult proofs. There are plenty of opportuni-
ties in the exercises and problems for students to provide arguments of their own.

I should say something about my choices of conventions and notations. The old
joke that “differential geometry is the study of properties that are invariant under
change of notation” is funny primarily because it is alarmingly close to the truth.
Every geometer has his or her favorite system of notation, and while the systems are
all in some sense formally isomorphic, the transformations required to get from one
to another are often not at all obvious to students. Because one of my central goals
is to prepare students to read advanced texts and research articles in differential
geometry, I have tried to choose notations and conventions that are as close to the
mainstream as I can make them without sacrificing too much internal consistency.
(One difference between this edition and the previous one is that I have changed
a number of my notational conventions to make them more consistent with main-
stream mathematical usage.) When there are multiple conventions in common use
(such as for the wedge product or the Laplace operator), I explain what the alterna-
tives are and alert the student to be aware of which convention is in use by any given
writer. Striving for too much consistency in this subject can be a mistake, however,
and I have eschewed absolute consistency whenever I felt it would get in the way
of ease of understanding. I have also introduced some common shortcuts at an early
stage, such as the Einstein summation convention and the systematic confounding
of maps with their coordinate representations, both of which tend to drive students
crazy at first, but pay off enormously in efficiency later.

Prerequisites

This subject draws on most of the topics that are covered in a typical undergraduate
mathematics education. The appendices (which most readers should read, or at least
skim, first) contain a cursory summary of prerequisite material on topology, linear
algebra, calculus, and differential equations. Although students who have not seen
this material before will not learn it from reading the appendices, I hope readers will
appreciate having all of the background material collected in one place. Besides
giving me a convenient way to refer to results that I want to assume as known, it
also gives the reader a splendid opportunity to brush up on topics that were once
(hopefully) understood but may have faded.
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Exercises and Problems

This book has a rather large number of exercises and problems for the student to
work out. Embedded in the text of each chapter are questions labeled as “Exercises.”
These are (mostly) short opportunities to fill in gaps in the text. Some of them are
routine verifications that would be tedious to write out in full, but are not quite trivial
enough to warrant tossing off as obvious. I recommend that serious readers take the
time at least to stop and convince themselves that they fully understand what is
involved in doing each exercise, if not to write out a complete solution, because it
will make their reading of the text far more fruitful.

At the end of each chapter is a collection of (mostly) longer and harder questions
labeled as “Problems.” These are the ones from which I select written homework
assignments when I teach this material. Many of them will take hours for students to
work through. Only by doing a substantial number of these problems can one hope
to absorb this material deeply. I have tried insofar as possible to choose problems
that are enlightening in some way and have interesting consequences in their own
right. When the result of a problem is used in an essential way in the text, the page
where it is used is noted at the end of the problem statement.

I have deliberately not provided written solutions to any of the problems, either
in the back of the book or on the Internet. In my experience, if written solutions
to problems are available, even the most conscientious students find it very hard
to resist the temptation to look at the solutions as soon as they get stuck. But it is
exactly at that stage of being stuck that students learn most effectively, by struggling
to get unstuck and eventually finding a path through the thicket. Reading someone
else’s solution too early can give one a comforting, but ultimately misleading, sense
of understanding. If you really feel you have run out of ideas, talk with an instructor,
a fellow student, or one of the online mathematical discussion communities such as
math.stackexchange.com. Even if someone else gives you a suggestion that turns out
to be the key to getting unstuck, you will still learn much more from absorbing the
suggestion and working out the details on your own than you would from reading
someone else’s polished proof.

About the Second Edition

Those who are familiar with the first edition of this book will notice first that the
topics have been substantially rearranged. This is primarily because I decided it was
worthwhile to introduce the two most important analytic tools (the rank theorem and
the fundamental theorem on flows) much earlier, so that they can be used throughout
the book rather than being relegated to later chapters.

A few new topics have been added, notably Sard’s theorem, some transversality
theorems, a proof that infinitesimal Lie group actions generate global group actions,
a more thorough study of first-order partial differential equations, a brief treatment
of degree theory for smooth maps between compact manifolds, and an introduction
to contact structures. I have consolidated the introductory treatments of Lie groups,
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Riemannian metrics, and symplectic manifolds in chapters of their own, to make
it easier to concentrate on the special features of those subjects when they are first
introduced (although Lie groups and Riemannian metrics still appear repeatedly in
later chapters). In addition, manifolds with boundary are now treated much more
systematically throughout the book.

Apart from additions and rearrangement, there are thousands of small changes
and also some large ones. Parts of every chapter have been substantially rewritten
to improve clarity. Some proofs that seemed too labored in the original have been
streamlined, while others that seemed unclear have been expanded. I have modified
some of my notations, usually moving toward more consistency with common no-
tations in the literature. There is a new notation index just before the subject index.

There are also some typographical improvements in this edition. Most impor-
tantly, mathematical terms are now typeset in bold italics when they are officially
defined, to reflect the fact that definitions are just as important as theorems and
proofs but fit better into the flow of paragraphs rather than being called out with
special headings. The exercises in the text are now indicated more clearly with a
special symbol (»), and numbered consecutively with the theorems to make them
easier to find. The symbol [J, in addition to marking the ends of proofs, now also
marks the ends of statements of corollaries that follow so easily that they do not
need proofs; and I have introduced the symbol / to mark the ends of numbered ex-
amples. The entire book is now set in Times Roman, supplemented by the excellent
MathTime Professional II mathematics fonts from Personal TgX, Inc.
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Chapter 1
Smooth Manifolds

This book is about smooth manifolds. In the simplest terms, these are spaces that
locally look like some Euclidean space R”, and on which one can do calculus. The
most familiar examples, aside from Euclidean spaces themselves, are smooth plane
curves such as circles and parabolas, and smooth surfaces such as spheres, tori,
paraboloids, ellipsoids, and hyperboloids. Higher-dimensional examples include the
set of points in R”*! at a constant distance from the origin (an n-sphere) and graphs
of smooth maps between Euclidean spaces.

The simplest manifolds are the topological manifolds, which are topological
spaces with certain properties that encode what we mean when we say that they
“locally look like” R”. Such spaces are studied intensively by topologists.

However, many (perhaps most) important applications of manifolds involve cal-
culus. For example, applications of manifold theory to geometry involve such prop-
erties as volume and curvature. Typically, volumes are computed by integration,
and curvatures are computed by differentiation, so to extend these ideas to mani-
folds would require some means of making sense of integration and differentiation
on a manifold. Applications to classical mechanics involve solving systems of or-
dinary differential equations on manifolds, and the applications to general relativity
(the theory of gravitation) involve solving a system of partial differential equations.

The first requirement for transferring the ideas of calculus to manifolds is some
notion of “smoothness.” For the simple examples of manifolds we described above,
all of which are subsets of Euclidean spaces, it is fairly easy to describe the mean-
ing of smoothness on an intuitive level. For example, we might want to call a curve
“smooth” if it has a tangent line that varies continuously from point to point, and
similarly a “smooth surface” should be one that has a tangent plane that varies con-
tinuously. But for more sophisticated applications it is an undue restriction to require
smooth manifolds to be subsets of some ambient Euclidean space. The ambient co-
ordinates and the vector space structure of R” are superfluous data that often have
nothing to do with the problem at hand. It is a tremendous advantage to be able to
work with manifolds as abstract topological spaces, without the excess baggage of
such an ambient space. For example, in general relativity, spacetime is modeled as
a 4-dimensional smooth manifold that carries a certain geometric structure, called a

J.M. Lee, Introduction to Smooth Manifolds, Graduate Texts in Mathematics 218, 1
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Fig. 1.1 A homeomorphism from a circle to a square

Lorentz metric, whose curvature results in gravitational phenomena. In such a model
there is no physical meaning that can be assigned to any higher-dimensional ambient
space in which the manifold lives, and including such a space in the model would
complicate it needlessly. For such reasons, we need to think of smooth manifolds as
abstract topological spaces, not necessarily as subsets of larger spaces.

It is not hard to see that there is no way to define a purely topological property
that would serve as a criterion for “smoothness,” because it cannot be invariant under
homeomorphisms. For example, a circle and a square in the plane are homeomor-
phic topological spaces (Fig. 1.1), but we would probably all agree that the circle is
“smooth,” while the square is not. Thus, topological manifolds will not suffice for
our purposes. Instead, we will think of a smooth manifold as a set with two layers
of structure: first a topology, then a smooth structure.

In the first section of this chapter we describe the first of these structures. A topo-
logical manifold is a topological space with three special properties that express the
notion of being locally like Euclidean space. These properties are shared by Eu-
clidean spaces and by all of the familiar geometric objects that look locally like
Euclidean spaces, such as curves and surfaces. We then prove some important topo-
logical properties of manifolds that we use throughout the book.

In the next section we introduce an additional structure, called a smooth structure,
that can be added to a topological manifold to enable us to make sense of derivatives.

Following the basic definitions, we introduce a number of examples of manifolds,
so you can have something concrete in mind as you read the general theory. At the
end of the chapter we introduce the concept of a smooth manifold with boundary, an
important generalization of smooth manifolds that will have numerous applications
throughout the book, especially in our study of integration in Chapter 16.

Topological Manifolds

In this section we introduce topological manifolds, the most basic type of manifolds.
We assume that the reader is familiar with the definition and basic properties of
topological spaces, as summarized in Appendix A.

Suppose M is a topological space. We say that M is a topological manifold of
dimension n or a topological n-manifold if it has the following properties:
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e M is a Hausdorff space: for every pair of distinct points p,q € M, there are
disjoint open subsets U,V € M suchthat pe U andg € V.

e M is second-countable: there exists a countable basis for the topology of M.

o M is locally Euclidean of dimension n: each point of M has a neighborhood
that is homeomorphic to an open subset of R”.

The third property means, more specifically, that for each p € M we can find

e an open subset U € M containing p,
e an open subset U C R”, andA
e a homeomorphism ¢: U — U.

» Exercise 1.1. Show that equivalent definitions of manifolds are obtained if instead
of allowing U to be homeomorphic to any open subset of R”, we require it to be
homeomorphic to an open ball in R”, or to R” itself.

If M is a topological manifold, we often abbreviate the dimension of M as
dim M . Informally, one sometimes writes “Let M" be a manifold” as shorthand
for “Let M be a manifold of dimension n.” The superscript # is not part of the name
of the manifold, and is usually not included in the notation after the first occurrence.

It is important to note that every topological manifold has, by definition, a spe-
cific, well-defined dimension. Thus, we do not consider spaces of mixed dimension,
such as the disjoint union of a plane and a line, to be manifolds at all. In Chapter 17,
we will use the theory of de Rham cohomology to prove the following theorem,
which shows that the dimension of a (nonempty) topological manifold is in fact a
topological invariant.

Theorem 1.2 (Topological Invariance of Dimension). A nonempty n-dimensional
topological manifold cannot be homeomorphic to an m-dimensional manifold un-
lessm =n.

For the proof, see Theorem 17.26. In Chapter 2, we will also prove a related but
weaker theorem (diffeomorphism invariance of dimension, Theorem 2.17). See also
[LeeTM, Chap. 13] for a different proof of Theorem 1.2 using singular homology
theory.

The empty set satisfies the definition of a topological n-manifold for every n. For
the most part, we will ignore this special case (sometimes without remembering to
say so0). But because it is useful in certain contexts to allow the empty manifold, we
choose not to exclude it from the definition.

The basic example of a topological n-manifold is R” itself. It is Hausdorff be-
cause it is a metric space, and it is second-countable because the set of all open balls
with rational centers and rational radii is a countable basis for its topology.

Requiring that manifolds share these properties helps to ensure that manifolds
behave in the ways we expect from our experience with Euclidean spaces. For ex-
ample, it is easy to verify that in a Hausdorff space, finite subsets are closed and
limits of convergent sequences are unique (see Exercise A.11 in Appendix A). The
motivation for second-countability is a bit less evident, but it will have important
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Fig. 1.2 A coordinate chart

consequences throughout the book, mostly based on the existence of partitions of
unity (see Chapter 2).

In practice, both the Hausdorff and second-countability properties are usually
easy to check, especially for spaces that are built out of other manifolds, because
both properties are inherited by subspaces and finite products (Propositions A.17
and A.23). In particular, it follows that every open subset of a topological n-
manifold is itself a topological n-manifold (with the subspace topology, of course).

We should note that some authors choose to omit the Hausdorff property or
second-countability or both from the definition of manifolds. However, most of the
interesting results about manifolds do in fact require these properties, and it is ex-
ceedingly rare to encounter a space “in nature” that would be a manifold except for
the failure of one or the other of these hypotheses. For a couple of simple examples,
see Problems 1-1 and 1-2; for a more involved example (a connected, locally Eu-
clidean, Hausdorff space that is not second-countable), see [LeeTM, Problem 4-6].

Coordinate Charts

Let M be a topological n-manifold. A coordinate chart (or just a chart) on M is a
pair (U, ¢), where U is an open subset of M and ¢: U — Uisa homeomorphism
from U to an open subset U= o(U) € R” (Fig. 1.2). By definition of a topological
manifold, each point p € M is contained in the domain of some chart (U, ¢). If
¢(p) = 0, we say that the chart is centered at p.1f (U, ¢) is any chart whose domain
contains p, it is easy to obtain a new chart centered at p by subtracting the constant
vector ¢(p).

Given a chart (U, ¢), we call the set U a coordinate domain, or a coordinate
neighborhood of each of its points. If, in addition, ¢(U) is an open ball in R”, then
U is called a coordinate ball; if ¢(U) is an open cube, U is a coordinate cube. The
map o is called a (local) coordinate map, and the component functions (x1 et x")
of ¢, defined by ¢(p) = (xl(p), .. .,x"(p)), are called local coordinates on U .
We sometimes write things such as “(U, ¢) is a chart containing p” as shorthand
for “(U, ¢) is a chart whose domain U contains p.” If we wish to emphasize the
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coordinate functions (xl, X ) instead of the coordinate map ¢, we sometimes

denote the chart by (U, (x',....x")) or (U, (x")).

Examples of Topological Manifolds

Here are some simple examples.

Example 1.3 (Graphs of Continuous Functions). Let U € R” be an open subset,
and let f: U — R¥ be a continuous function. The graph of f is the subset of
R” x R¥ defined by

L(f)={(x,y)eR"xR¥:xeUand y = f(x)},

with the subspace topology. Let 71 : R” x R¥ — R” denote the projection onto the
first factor, and let ¢: I'(f) — U be the restriction of 711 to I'( f):

p(x,y)=x, (x,y)el(f).

Because ¢ is the restriction of a continuous map, it is continuous; and it is a home-
omorphism because it has a continuous inverse given by ¢~ (x) = (x, f(x)). Thus
I'(f) is a topological manifold of dimension n. In fact, I'(f) is homeomorphic
to U itself, and (I'(f), ¢) is a global coordinate chart, called graph coordinates.
The same observation applies to any subset of R”*¥ defined by setting any k of
the coordinates (not necessarily the last k) equal to some continuous function of the
other n, which are restricted to lie in an open subset of R”. /

Example 1.4 (Spheres). For each integer n > 0, the unit n-sphere S” is Hausdorff
and second-countable because it is a topological subspace of R”*!. To show that

it is locally Euclidean, for each index i = 1,...,n + 1 let Ui+ denote the subset
of R"*1 where the i th coordinate is positive:
Ui+ = {(xl,...,x”H) e R*L: i >O}.

(See Fig. 1.3.) Similarly, U,~ is the set where x’ < 0.

14
Let f: B" — R be the continuous function

@) =V1—ul.

Then foreachi = 1,...,n + 1, it is easy to check that Ui+ N S” is the graph of the
function

xt =f(x1,...,>/c\",...,x"+1),

where the hat indicates that x’ is omitted. Similarly, U N'S" is the graph of

X! =—f(x1,...,;,...,x”+1),

Thus each subset U; + N 'S” is locally Euclidean of dimension 7, and the maps
(pl UjE NS" — B” given by

n+1)

<pii(x1,...,x =(x" . x o x
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Fig. 1.3 Charts for S”

are graph coordinates for S”. Since each point of S” is in the domain of at least one
of these 2n + 2 charts, S” is a topological n-manifold. n

Example 1.5 (Projective Spaces). The n-dimensional real projective space, de-
noted by RIP” (or sometimes just P"), is defined as the set of 1-dimensional lin-
ear subspaces of R*T!, with the quotient topology determined by the natural map
7: R"1 {0} — RP” sending each point x € R*T1 < {0} to the subspace spanned
by x. The 2-dimensional projective space RIP? is called the projective plane. For
any point x € R*T1 < {0}, let [x] = m(x) € RP” denote the line spanned by x.
For each i = 1,...,n + 1, let (z,- C R**1 < {0} be the set where x’ # 0,

and let U; = n(U,-) C RPP”. Since U; is a saturated open subset, U; is open and

n|l7i : (7,- — U; is a quotient map (see Theorem A.27). Define a map ¢; : U; — R”
by

i—1 XH—I xn+1
Xt xt 7 Xt xt )

1
X X
1 N1 _
gi[x' . x ]—(—,..., _

This map is well defined because its value is unchanged by multiplying x by a
nonzero constant. Because ¢; o 7 is continuous, ¢; is continuous by the character-
istic property of quotient maps (Theorem A.27). In fact, ¢; is a homeomorphism,
because it has a continuous inverse given by
i (u's . u") = [ul,...,ui_l,l,ui,...,u"],

as you can check. Geometrically, ¢([x]) = u means (u, 1) is the point in R"*!
where the line [x] intersects the affine hyperplane where x! = 1 (Fig. 1.4). Be-
cause the sets Uj,...,U,4+1 cover RP”, this shows that RP” is locally Eu-
clidean of dimension n. The Hausdorff and second-countability properties are left as
exercises. I
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Fig. 1.4 A chart for RP”

» Exercise 1.6. Show that RPP” is Hausdorff and second-countable, and is therefore
a topological n-manifold.

» Exercise 1.7. Show that RP” is compact. [Hint: show that the restriction of 7 to
S™ is surjective.]

Example 1.8 (Product Manifolds). Suppose M, ..., M are topological mani-
folds of dimensions ny,...,nk, respectively. The product space My x --- X My
is shown to be a topological manifold of dimension n; + --- + ng as follows. It
is Hausdorff and second-countable by Propositions A.17 and A.23, so only the
locally Euclidean property needs to be checked. Given any point (pq,..., pr) €
Mj X ---x My, we can choose a coordinate chart (U;, ¢;) for each M; with p; € U;.
The product map

@1 XX @ Up X oo x U — R™MT Tk

is a homeomorphism onto its image, which is a product open subset of R”1 7k
Thus, M x -+ x My is a topological manifold of dimension ny + -+ + ng, with
charts of the form (Uy X +++ X Ug, @1 X +++ X @k ). I

Example 1.9 (Tori). For a positive integer n, the n-torus (plural: tori) is the product
space T" = S! x --- x S!. By the discussion above, it is a topological n-manifold.
(The 2-torus is usually called simply the forus.) I

Topological Properties of Manifolds

As topological spaces go, manifolds are quite special, because they share so many
important properties with Euclidean spaces. Here we discuss a few such properties
that will be of use to us throughout the book.

Most of the properties we discuss in this section depend on the fact that every
manifold possesses a particularly well-behaved basis for its topology.

Lemma 1.10. Every topological manifold has a countable basis of precompact co-
ordinate balls.



8 1  Smooth Manifolds

Proof. Let M be a topological n-manifold. First we consider the special case in
which M can be covered by a single chart. Suppose ¢: M — UcCR'isa global
coordinate map, and let B be the collection of all open balls B, (x) € R” such that
r is rational, x has rational coordinates, and B, (x) C U for some ' > r. Each such
ball is precompact in U, and it is easy to check that B is a countable basis for the
topology of U. Because ¢ is a homeomorphism, it follows that the collection of sets
of the form ¢ ~!(B) for B € B is a countable basis for the topology of M, consisting
of precompact coordinate balls, with the restrictions of ¢ as coordinate maps.

Now let M be an arbitrary n-manifold. By definition, each point of M is in
the domain of a chart. Because every open cover of a second-countable space has
a countable subcover (Proposition A.16), M is covered by countably many charts
{(Ui, ¢;)}. By the argument in the preceding paragraph, each coordinate domain Uj;
has a countable basis of coordinate balls that are precompact in U;, and the union of
all these countable bases is a countable basis for the topology of M. If V' C U; is one
of these balls, then the closure of V' in U; is compact, and because M is Hausdorff,
itis closed in M. It follows that the closure of V' in M is the same as its closure in
Ui, so V is precompact in M as well. O

Connectivity

The existence of a basis of coordinate balls has important consequences for the
connectivity properties of manifolds. Recall that a topological space X is

e connected if there do not exist two disjoint, nonempty, open subsets of X whose
union is X;

e path-connected if every pair of points in X can be joined by a path in X; and

o locally path-connected if X has a basis of path-connected open subsets.

(See Appendix A.) The following proposition shows that connectivity and path con-
nectivity coincide for manifolds.

Proposition 1.11. Let M be a topological manifold.

(@) M is locally path-connected.

(b) M is connected if and only if it is path-connected.

(c) The components of M are the same as its path components.

(d) M has countably many components, each of which is an open subset of M and
a connected topological manifold.

Proof. Since each coordinate ball is path-connected, (a) follows from the fact that
M has a basis of coordinate balls. Parts (b) and (c) are immediate consequences of
(a) and Proposition A.43. To prove (d), note that each component is open in M by
Proposition A.43, so the collection of components is an open cover of M. Because
M 1is second-countable, this cover must have a countable subcover. But since the
components are all disjoint, the cover must have been countable to begin with, which
is to say that M has only countably many components. Because the components are
open, they are connected topological manifolds in the subspace topology. O
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Local Compactness and Paracompactness

The next topological property of manifolds that we need is local compactness (see
Appendix A for the definition).

Proposition 1.12 (Manifolds Are Locally Compact). Every topological manifold
is locally compact.

Proof. Lemma 1.10 showed that every manifold has a basis of precompact open
subsets. O

Another key topological property possessed by manifolds is called paracompact-
ness. It is a consequence of local compactness and second-countability, and in fact
is one of the main reasons why second-countability is included in the definition of
manifolds.

Let M be a topological space. A collection X of subsets of M is said to be locally
finite if each point of M has a neighborhood that intersects at most finitely many
of the sets in X. Given a cover U of M, another cover V is called a refinement of
U if for each V € 'V there exists some U € U such that V C U. We say that M is
paracompact if every open cover of M admits an open, locally finite refinement.

Lemma 1.13. Suppose X is a locally finite collection of subsets of a topological
space M .

(a) The collection {f X € X} is also locally finite.
(b) UXEXX = UXEXX‘

» Exercise 1.14. Prove the preceding lemma.

Theorem 1.15 (Manifolds Are Paracompact). Every topological manifold is
paracompact. In fact, given a topological manifold M, an open cover X of M,
and any basis B for the topology of M, there exists a countable, locally finite open
refinement of X consisting of elements of B.

Proof. Given M, X, and 8B as in the hypothesis of the theorem, let (K )]9‘;1 be an
exhaustion of M by compact sets (Proposition A.60). For each j,let V; = Kj 11 ~
IntK; and W; = IntK;,5 ~ K;_1 (where we interpret K; as & if j < 1). Then
V; is a compact set contained in the open subset W;. For each x € V;, there is
some X, € X containing x, and because 8B is a basis, there exists By € B such
that x € By C X, N W;. The collection of all such sets By as x ranges over V;
is an open cover of V;, and thus has a finite subcover. The union of all such finite
subcovers as j ranges over the positive integers is a countable open cover of M
that refines X'. Because the finite subcover of V; consists of sets contained in W},
and W; N W;» = & except when j —2 < j’ < j + 2, the resulting cover is locally
finite. O

Problem 1-5 shows that, at least for connected spaces, paracompactness can be
used as a substitute for second-countability in the definition of manifolds.
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Fundamental Groups of Manifolds

The following result about fundamental groups of manifolds will be important in
our study of covering manifolds in Chapter 4. For a brief review of the fundamental
group, see Appendix A.

Proposition 1.16. The fundamental group of a topological manifold is countable.

Proof. Let M be a topological manifold. By Lemma 1.10, there is a countable
collection B of coordinate balls covering M. For any pair of coordinate balls
B, B’ € B, the intersection B N B’ has at most countably many components, each
of which is path-connected. Let X be a countable set containing a point from each
component of B N B’ for each B, B’ € B (including B = B’). For each B € 8 and
each x,x’ € X such that x,x’ € B, let hf’x, be some path from x to x” in B.

Since the fundamental groups based at any two points in the same component
of M are isomorphic, and X contains at least one point in each component of M,
we may as well choose a point p € X as base point. Define a special loop to be a
loop based at p that is equal to a finite product of paths of the form hB . Clearly,
the set of special loops is countable, and each special loop determmes an element
of (M, p). To show that r; (M, p) is countable, therefore, it suffices to show that
each element of 71 (M, p) is represented by a special loop.

Suppose f: [0,1] — M is a loop based at p. The collection of components of
sets of the form f~!(B) as B ranges over B is an open cover of [0, 1], so by
compactness it has a finite subcover. Thus, there are finitely many numbers 0 =
ag <ajy <---<ay = 1 such that [a;_1,a;] € f~1(B) for some B C B. For each
i, let f; be the restriction of f to the interval [a;_1,a;], reparametrized so that its
domain is [0, 1], and let B; € B be a coordinate ball containing the image of f;.
For each i, we have f(a;) € B; N Bj+1, and there is some x; € X that lies in the
same component of B; N B; 1 as f(a;). Let g; be a path in B; N B; 4+ from x; to
f(a;) (Fig. 1.5), with the understanding that xo = xx = p, and go and g are both
equal to the constant path ¢, based at p. Then, because g; - g; is path-homotopic to
a constant path (where g; (#) = g; (1 —t) is the reverse path of g;),

S~fiee S
~go-f1-81°81°f2-82+ "+ 8k—1"8k—1"* Jk * &k

where f: =gi_1-fi-* §, For each i, ﬁ is a path in B; from x;_; to x;. Since
B; is simply connected, ﬁ is path-homotopic to hx, 1.x; - It follows that " is path-
homotopic to a special loop, as claimed. O

Smooth Structures

The definition of manifolds that we gave in the preceding section is sufficient for
studying topological properties of manifolds, such as compactness, connectedness,
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Fig. 1.5 The fundamental group of a manifold is countable

simple connectivity, and the problem of classifying manifolds up to homeomor-
phism. However, in the entire theory of topological manifolds there is no men-
tion of calculus. There is a good reason for this: however we might try to make
sense of derivatives of functions on a manifold, such derivatives cannot be in-
variant under homeomorphisms. For example, the map ¢: R? — R? given by
o(u,v) = (ul/ 3 vl/ 3) is a homeomorphism, and it is easy to construct differen-
tiable functions f: R? — R such that f o ¢ is not differentiable at the origin. (The
function f(x,y) = x is one such.)

To make sense of derivatives of real-valued functions, curves, or maps between
manifolds, we need to introduce a new kind of manifold called a smooth manifold. It
will be a topological manifold with some extra structure in addition to its topology,
which will allow us to decide which functions to or from the manifold are smooth.

The definition will be based on the calculus of maps between Euclidean spaces,
so let us begin by reviewing some basic terminology about such maps. If U and
V' are open subsets of Euclidean spaces R” and R™, respectively, a function
F: U — V is said to be smooth (or C, or infinitely differentiable) if each of
its component functions has continuous partial derivatives of all orders. If in addi-
tion F is bijective and has a smooth inverse map, it is called a diffeomorphism.
A diffeomorphism is, in particular, a homeomorphism.

A review of some important properties of smooth maps is given in Appendix C.
You should be aware that some authors define the word smooth differently—for
example, to mean continuously differentiable or merely differentiable. On the other
hand, some use the word differentiable to mean what we call smooth. Throughout
this book, smooth is synonymous with C*°.

To see what additional structure on a topological manifold might be appropriate
for discerning which maps are smooth, consider an arbitrary topological n-mani-
fold M. Each point in M is in the domain of a coordinate map ¢: U — U c R
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Fig. 1.6 A transition map

A plausible definition of a smooth function on M would be to say that f: M — R is
smooth if and only if the composite function fop~!: U — R is smooth in the sense
of ordinary calculus. But this will make sense only if this property is independent of
the choice of coordinate chart. To guarantee this independence, we will restrict our
attention to “smooth charts.” Since smoothness is not a homeomorphism-invariant
property, the way to do this is to consider the collection of all smooth charts as a
new kind of structure on M.

With this motivation in mind, we now describe the details of the construction.

Let M be a topological n-manifold. If (U,¢), (V,¥) are two charts such that
U NV # @, the composite map ¥ o ¢~ 1: (U N V) — (U N V) is called the
transition map from ¢ to ¥ (Fig. 1.6). It is a composition of homeomorphisms, and
is therefore itself a homeomorphism. Two charts (U, ¢) and (V, ) are said to be
smoothly compatible if either U NV = & or the transition map ¥ o ¢! is a dif-
feomorphism. Since ¢(U N V') and ¢ (U N V') are open subsets of R”, smoothness
of this map is to be interpreted in the ordinary sense of having continuous partial
derivatives of all orders.

We define an atlas for M to be a collection of charts whose domains cover M .
An atlas + is called a smooth atlas if any two charts in 4 are smoothly compatible
with each other.

To show that an atlas is smooth, we need only verify that each transition map
¥ o~ ! is smooth whenever (U, ) and (V, ¥) are charts in +; once we have proved
this, it follows that v o ¢! is a diffeomorphism because its inverse (¥ o (p_l)_l =
@ oy~ ! is one of the transition maps we have already shown to be smooth. Alterna-
tively, given two particular charts (U, ¢) and (V, 1), it is often easiest to show that
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they are smoothly compatible by verifying that v o ¢! is smooth and injective with
nonsingular Jacobian at each point, and appealing to Corollary C.36.

Our plan is to define a “smooth structure” on M by giving a smooth atlas, and to
define a function f: M — R to be smooth if and only if f o ¢~! is smooth in the
sense of ordinary calculus for each coordinate chart (U, ¢) in the atlas. There is one
minor technical problem with this approach: in general, there will be many possible
atlases that give the “same” smooth structure, in that they all determine the same
collection of smooth functions on M. For example, consider the following pair of
atlases on R”:

<A)1 = {(Rn,Ian )} .
Ay = {(Bl(x)vIdBl(x)) X e Rn}.

Although these are different smooth atlases, clearly a function f: R” — R is
smooth with respect to either atlas if and only if it is smooth in the sense of or-
dinary calculus.

We could choose to define a smooth structure as an equivalence class of smooth
atlases under an appropriate equivalence relation. However, it is more straightfor-
ward to make the following definition: a smooth atlas 4 on M is maximal if it is
not properly contained in any larger smooth atlas. This just means that any chart that
is smoothly compatible with every chart in +4 is already in +4. (Such a smooth atlas
is also said to be complete.)

Now we can define the main concept of this chapter. If M is a topological mani-
fold, a smooth structure on M is a maximal smooth atlas. A smooth manifold is a
pair (M, A), where M is a topological manifold and + is a smooth structure on M.
When the smooth structure is understood, we usually omit mention of it and just say
“M is a smooth manifold.” Smooth structures are also called differentiable struc-
tures or C*° structures by some authors. We also use the term smooth manifold
structure to mean a manifold topology together with a smooth structure.

We emphasize that a smooth structure is an additional piece of data that must
be added to a topological manifold before we are entitled to talk about a “smooth
manifold.” In fact, a given topological manifold may have many different smooth
structures (see Example 1.23 and Problem 1-6). On the other hand, it is not always
possible to find a smooth structure on a given topological manifold: there exist topo-
logical manifolds that admit no smooth structures at all. (The first example was a
compact 10-dimensional manifold found in 1960 by Michel Kervaire [Ker60].)

It is generally not very convenient to define a smooth structure by explicitly de-
scribing a maximal smooth atlas, because such an atlas contains very many charts.
Fortunately, we need only specify some smooth atlas, as the next proposition shows.

Proposition 1.17. Let M be a topological manifold.

(a) Every smooth atlas A for M is contained in a unique maximal smooth atlas,
called the smooth structure determined by A.

(b) Two smooth atlases for M determine the same smooth structure if and only if
their union is a smooth atlas.
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Fig. 1.7 Proof of Proposition 1.17(a)

Proof. Let 4 be a smooth atlas for M, and let A denote the set of all charts that
are smoothly compatible with every chart in 4. To show that A is a smooth atlas,
we need to show that any two charts of 4 are smoothly compatible with each other,
which is to say that for any (U, @), (V,¥) € A, the map Yy oo™ ': (U N V) —
¥ (U NV) is smooth.

Let x = ¢(p) € ¢(U N V) be arbitrary. Because the domains of the charts in A
cover M, there is some chart (W, ) € 4 such that p € W (Fig. 1.7). Since every
chart in 4 is smoothly compatible with (W, 8), both of the maps f o' and ¢ 0~!
are smooth where they are defined. Since p € U NV N W , it follows that Y o~ ! =
(Y 0071) o (Hog™) is smooth on a neighborhood of x. Thus, ¥ o™~ is smooth in

a neighborhood of each point in (U N V). Therefore, #4 is a smooth atlas. To check
that it is maximal, just note that any chart that is smoothly compatible with every
chart in A must in particular be smoothly compatible with every chart in 4, so it is
already in +4. This proves the existence of a maximal smooth atlas containing 4. If
B is any other maximal smooth atlas containing #, each of its charts is smoothly
compatible with each chart in A, so B8 C 4. By maximality of 8, B = A.

The proof of (b) is left as an exercise. O

» Exercise 1.18. Prove Proposition 1.17(b).

For example, if a topological manifold M can be covered by a single chart, the
smooth compatibility condition is trivially satisfied, so any such chart automatically
determines a smooth structure on M.

It is worth mentioning that the notion of smooth structure can be generalized
in several different ways by changing the compatibility requirement for charts.
For example, if we replace the requirement that charts be smoothly compatible by
the weaker requirement that each transition map ¥ o ¢! (and its inverse) be of
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class C¥, we obtain the definition of a C k structure. Similarly, if we require that
each transition map be real-analytic (i.e., expressible as a convergent power series in
a neighborhood of each point), we obtain the definition of a real-analytic structure,
also called a C® structure. If M has even dimension n = 2m, we can identify R2™
with C™ and require that the transition maps be complex-analytic; this determines
a complex-analytic structure. A manifold endowed with one of these structures is
called a C* manifold, real-analytic manifold, or complex manifold, respectively.
(Note that a C® manifold is just a topological manifold.) We do not treat any of these
other kinds of manifolds in this book, but they play important roles in analysis, so it
is useful to know the definitions.

Local Coordinate Representations

If M is a smooth manifold, any chart (U, ¢) contained in the given maximal smooth
atlas is called a smooth chart, and the corresponding coordinate map ¢ is called a
smooth coordinate map. It is useful also to introduce the terms smooth coordinate
domain or smooth coordinate neighborhood for the domain of a smooth coordinate
chart. A smooth coordinate ball means a smooth coordinate domain whose image
under a smooth coordinate map is a ball in Euclidean space. A smooth coordinate
cube is defined similarly.

It is often useful to restrict attention to coordinate balls whose closures sit nicely
inside larger coordinate balls. We say a set B C M is a regular coordinate ball if
there is a smooth coordinate ball B’ 2 B and a smooth coordinate map ¢: B’ — R”
such that for some positive real numbers r < r’,

¢(B)=B,©0).  ¢(B)=B,0). and ¢(B')=B.(0).

Because B is homeomorphic to B, (0), it is compact, and thus every regular coordi-
nate ball is precompact in M. The next proposition gives a slight improvement on
Lemma 1.10 for smooth manifolds. Its proof is a straightforward adaptation of the
proof of that lemma.

Proposition 1.19. Every smooth manifold has a countable basis of regular coordi-
nate balls.

» Exercise 1.20. Prove Proposition 1.19.

Here is how one usually thinks about coordinate charts on a smooth manifold.
Once we choose a smooth chart (U, ¢) on M, the coordinate map ¢: U — UcCR”
can be thought of as giving a temporary identification between U and U. Using this
identification, while we work in this chart, we can think of U simultaneously as an
open subset of M and as an open subset of R”. You can visualize this identification
by thinking of a “grid” drawn on U representing the preimages of the coordinate
lines under ¢ (Fig. 1.8). Under this identification, we can represent a point p €
U by its coordinates (x',...,x") = @(p), and think of this n-tuple as being the
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Fig. 1.8 A coordinate grid

point p. We typically express this by saying “(xl, e ,x") is the (local) coordinate
representation for p” or “p = (xl ey x”) in local coordinates.”

Another way to look at it is that by means of our identification U < U, we can
think of ¢ as the identity map and suppress it from the notation. This takes a bit
of getting used to, but the payoff is a huge simplification of the notation in many
situations. You just need to remember that the identification is in general only local,
and depends heavily on the choice of coordinate chart.

You are probably already used to such identifications from your study of mul-
tivariable calculus. The most common example is polar coordinates (r,0) in
the plane, defined implicitly by the relation (x,y) = (rcos6,rsinf) (see Exam-
ple C.37). On an appropriate open subset such as U = {(x, y) : x > 0} C R2, (r,0)
can be expressed as smooth functions of (x, y), and the map that sends (x, y) to
the corresponding (r,6) is a smooth coordinate map with respect to the standard
smooth structure on R2. Using this map, we can write a given point p € U either as
p = (x,y) in standard coordinates or as p = (r, f) in polar coordinates, where the
two coordinate representations are related by (r,6) = (y/x2 + y2,tan"! y/x) and
(x,y) = (rcos@,rsinf). Other polar coordinate charts can be obtained by restrict-
ing (r, #) to other open subsets of R? ~ {0}.

The fact that manifolds do not come with any predetermined choice of coordi-
nates is both a blessing and a curse. The flexibility to choose coordinates more or
less arbitrarily can be a big advantage in approaching problems in manifold the-
ory, because the coordinates can often be chosen to simplify some aspect of the
problem at hand. But we pay for this flexibility by being obliged to ensure that any
objects we wish to define globally on a manifold are not dependent on a particular
choice of coordinates. There are generally two ways of doing this: either by writing
down a coordinate-dependent definition and then proving that the definition gives
the same results in any coordinate chart, or by writing down a definition that is man-
ifestly coordinate-independent (often called an invariant definition). We will use the
coordinate-dependent approach in a few circumstances where it is notably simpler,
but for the most part we will give coordinate-free definitions whenever possible.
The need for such definitions accounts for much of the abstraction of modern man-
ifold theory. One of the most important skills you will need to acquire in order to
use manifold theory effectively is an ability to switch back and forth easily between
invariant descriptions and their coordinate counterparts.
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Examples of Smooth Manifolds

Before proceeding further with the general theory, let us survey some examples of
smooth manifolds.

Example 1.21 (0-Dimensional Manifolds). A topological manifold M of dimen-
sion O is just a countable discrete space. For each point p € M, the only neighbor-
hood of p that is homeomorphic to an open subset of R? is {p} itself, and there is
exactly one coordinate map ¢: {p} — RO. Thus, the set of all charts on M trivially
satisfies the smooth compatibility condition, and each 0-dimensional manifold has
a unique smooth structure. "

Example 1.22 (Euclidean Spaces). For each nonnegative integer n, the Euclidean
space R” is a smooth n-manifold with the smooth structure determined by the atlas
consisting of the single chart (R”, Idg~ ). We call this the standard smooth structure
on R" and the resulting coordinate map standard coordinates. Unless we explic-
itly specify otherwise, we always use this smooth structure on R”. With respect to
this smooth structure, the smooth coordinate charts for R” are exactly those charts
(U, @) such that ¢ is a diffeomorphism (in the sense of ordinary calculus) from U
to another open subset U C R”. /

Example 1.23 (Another Smooth Structure on R). Consider the homeomorphism
¥: R — R given by

V(x) = x> (1.1)
The atlas consisting of the single chart (R, 1) defines a smooth structure on R.
This chart is not smoothly compatible with the standard smooth structure, because
the transition map Idg oty ~'(y) = y!/3 is not smooth at the origin. Therefore, the
smooth structure defined on R by ¥ is not the same as the standard one. Using
similar ideas, it is not hard to construct many distinct smooth structures on any given

positive-dimensional topological manifold, as long as it has one smooth structure to
begin with (see Problem 1-6). /

Example 1.24 (Finite-Dimensional Vector Spaces). Let I be a finite-dimensional
real vector space. Any norm on V' determines a topology, which is independent
of the choice of norm (Exercise B.49). With this topology, V is a topological n-
manifold, and has a natural smooth structure defined as follows. Each (ordered)
basis (Eq,..., E,) for V defines a basis isomorphism E: R” — V by

n
E(x)= Z x'E;.
i=1
This map is a homeomorphism, so (V, E™!) is a chart. If (El, o, En) is any other
basis and E(x) =) ;X7 Ej is the corresponding isomorphism, then there is some
invertible matrix (A7) such that E; = Y ; A!E; for each i. The transition map
between the two charts is then given by E~! o E(x) = X, where X = (x1,....5m)
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is determined by

n n n
SRE =Y vE=Y valE;
j=1 i=1 ij=1
It follows that X/ = > Alj x. Thus, the map sending x to X is an invertible linear
map and hence a diffeomorphism, so any two such charts are smoothly compatible.

The collection of all such charts thus defines a smooth structure, called the standard
smooth structure on 'V . Vi

The Einstein Summation Convention

This is a good place to pause and introduce an important notational convention that
is commonly used in the study of smooth manifolds. Because of the proliferation
of summations such as ) ; x! E; in this subject, we often abbreviate such a sum by
omitting the summation sign, as in

n
E(x)=x"E;, an abbreviation for E(x) = inEi'

i=1

We interpret any such expression according to the following rule, called the Einstein
summation convention: if the same index name (such as i in the expression above)
appears exactly twice in any monomial term, once as an upper index and once as
a lower index, that term is understood to be summed over all possible values of
that index, generally from 1 to the dimension of the space in question. This simple
idea was introduced by Einstein to reduce the complexity of expressions arising
in the study of smooth manifolds by eliminating the necessity of explicitly writing
summation signs. We use the summation convention systematically throughout the
book (except in the appendices, which many readers will look at before the rest of
the book).

Another important aspect of the summation convention is the positions of the
indices. We always write basis vectors (such as E;) with lower indices, and com-
ponents of a vector with respect to a basis (such as x’) with upper indices. These
index conventions help to ensure that, in summations that make mathematical sense,
each index to be summed over typically appears twice in any given term, once as a
lower index and once as an upper index. Any index that is implicitly summed over
is a “dummy index,” meaning that the value of such an expression is unchanged if a
different name is substituted for each dummy index. For example, x’ E; and x/ E i
mean exactly the same thing.

Since the coordinates of a point (xl ey x”) € R” are also its components with
respect to the standard basis, in order to be consistent with our convention of writing
components of vectors with upper indices, we need to use upper indices for these co-
ordinates, and we do so throughout this book. Although this may seem awkward at
first, in combination with the summation convention it offers enormous advantages
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when we work with complicated indexed sums, not the least of which is that expres-
sions that are not mathematically meaningful often betray themselves quickly by
violating the index convention. (The main exceptions are expressions involving the
Euclidean dot product x - y =) ; x?y’, in which the same index appears twice in
the upper position, and the standard symplectic form on R?", which we will define
in Chapter 22. We always explicitly write summation signs in such expressions.)

More Examples

Now we continue with our examples of smooth manifolds.

Example 1.25 (Spaces of Matrices). Let M(m x n,R) denote the set of m x n
matrices with real entries. Because it is a real vector space of dimension mn under
matrix addition and scalar multiplication, M(m x n, R) is a smooth mn-dimensional
manifold. (In fact, it is often useful to identify M(m x n,R) with R™", just by
stringing all the matrix entries out in a single row.) Similarly, the space M(m x n, C)
of m x n complex matrices is a vector space of dimension 2mn over R, and thus
a smooth manifold of dimension 2mn. In the special case in which m = n (square
matrices), we abbreviate M(n x n,R) and M(n x n,C) by M(n,R) and M(n, C),
respectively. /

Example 1.26 (Open Submanifolds). Let U be any open subset of R”. Then U is
a topological n-manifold, and the single chart (U, Idy ) defines a smooth structure
onU.

More generally, let M be a smooth n-manifold and let U € M be any open
subset. Define an atlas on U by

Ay = {smooth charts (V, ) for M such that V C U}.

Every point p € U is contained in the domain of some chart (W, ¢) for M ; if we set
V=WnNU,then (V,¢|y) is a chart in Ay whose domain contains p. Therefore,
U is covered by the domains of charts in 4y, and it is easy to verify that this is
a smooth atlas for U. Thus any open subset of M is itself a smooth n-manifold
in a natural way. Endowed with this smooth structure, we call any open subset an
open submanifold of M. (We will define a more general class of submanifolds in
Chapter 5.) I

Example 1.27 (The General Linear Group). The general linear group GL(n,R)
is the set of invertible n x n matrices with real entries. It is a smooth n2-dimensional
manifold because it is an open subset of the n2-dimensional vector space M(n,R),
namely the set where the (continuous) determinant function is nonzero. /

Example 1.28 (Matrices of Full Rank). The previous example has a natural gener-
alization to rectangular matrices of full rank. Suppose m < n, and let M,,, (m x n, R)
denote the subset of M(m x n,R) consisting of matrices of rank m. If 4 is an ar-
bitrary such matrix, the fact that rank A = m means that A has some nonsingular
m x m submatrix. By continuity of the determinant function, this same submatrix
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has nonzero determinant on a neighborhood of A in M(m x n,R), which implies
that A has a neighborhood contained in M,, (m x n,R). Thus, M,,,(m x n,R) is an
open subset of M(m x n,R), and therefore is itself a smooth mn-dimensional man-
ifold. A similar argument shows that M,, (m x n, R) is a smooth m n-manifold when
n<m. VA

Example 1.29 (Spaces of Linear Maps). Suppose V and W are finite-dimensional
real vector spaces, and let L(V'; W) denote the set of linear maps from V' to W. Then
because L(V'; W) is itself a finite-dimensional vector space (whose dimension is the
product of the dimensions of V' and W), it has a natural smooth manifold structure
as in Example 1.24. One way to put global coordinates on it is to choose bases for V'
and W, and represent each T' € L(V'; W) by its matrix, which yields an isomorphism
of L(V; W) with M(m x n,R) form =dimW and n = dim V. I

Example 1.30 (Graphs of Smooth Functions). If U C R” is an open subset and
f: U — R is a smooth function, we have already observed above (Example 1.3)
that the graph of f is a topological n-manifold in the subspace topology. Since
I'(f) is covered by the single graph coordinate chart ¢: I'(f) — U (the restriction
of 71), we can put a canonical smooth structure on I'( /) by declaring the graph
coordinate chart (I'( f), ¢) to be a smooth chart. I

Example 1.31 (Spheres). We showed in Example 1.4 that the n-sphere S € R"*+!
is a topological n-manifold. We put a smooth structure on S” as follows. For each
i=1,....,n+1,let (Uii, <pli) denote the graph coordinate charts we constructed
in Example 1.4. For any distinct indices i and j, the transition map <pii o ((p]i)*l is

easily computed. In the case i < j, we get

<piio((p_;t)_l (ulu")z(ult,t\’i 1—|u|2,...,u")

(with the square root in the jth position), and a similar formula holds wheni > ;.
When i = j, an even simpler computation gives ¢;" o (¢;) ™1 = ¢ o (¢;") 7! =
Idgn . Thus, the collection of charts {(U.¢i)} is a smooth atlas, and so defines a
smooth structure on S”. We call this its standard smooth structure. Vi

Example 1.32 (Level Sets). The preceding example can be generalized as fol-
lows. Suppose U € R” is an open subset and @: U — R is a smooth function.
For any ¢ € R, the set @7 !(c) is called a level set of @. Choose some c € R, let
M = ®~!(c), and suppose it happens that the total derivative D®(a) is nonzero
for each a € @~ !(c). Because D®(a) is a row matrix whose entries are the partial
derivatives (3®/0x'(a),...,0®/dx™(a)), for each a € M there is some i such that
0@ /0x' (a) # 0. It follows from the implicit function theorem (Theorem C.40, with
x! playing the role of y) that there is a neighborhood Uy of a such that M N Uy can
be expressed as a graph of an equation of the form

i 1 Az n
X :f(x s Xt x ),

for some smooth real-valued function f defined on an open subset of R”~!. There-
fore, arguing just as in the case of the n-sphere, we see that M is a topological
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manifold of dimension (rn — 1), and has a smooth structure such that each of the
graph coordinate charts associated with a choice of f as above is a smooth chart.
In Chapter 5, we will develop the theory of smooth submanifolds, which is a far-
reaching generalization of this construction. I

Example 1.33 (Projective Spaces). The n-dimensional real projective space RP”
is a topological n-manifold by Example 1.5. Let us check that the coordinate charts
(Ui, ¢i) constructed in that example are all smoothly compatible. Assuming for con-
venience that i > j, it is straightforward to compute that

ul uj—l u]+1 ut—l 1 ut un)

(pjo<pi_1(u1,...,un)=(ﬁ,..., u] s uj ey e

which is a diffeomorphism from ¢; (U; N U;) to ¢; (U; N Uj). I

Example 1.34 (Smooth Product Manifolds). If M,..., M} are smooth manifolds
of dimensions ny,...,n, respectively, we showed in Example 1.8 that the product
space My x --- X My is a topological manifold of dimension ny + --- 4 ng, with
charts of the form (Uy X --- X Uy, @1 X -++ X @f). Any two such charts are smoothly
compatible because, as is easily verified,

(Y1 X+ x Y) o (o1 X"'X¢k)_1 — (1//1 ogpl—l) X eee X (I/Ik ogglzl),

which is a smooth map. This defines a natural smooth manifold structure on the
product, called the product smooth manifold structure. For example, this yields a
smooth manifold structure on the n-torus T" = S! x --- x S, Vi

In each of the examples we have seen so far, we constructed a smooth manifold
structure in two stages: we started with a topological space and checked that it was
a topological manifold, and then we specified a smooth structure. It is often more
convenient to combine these two steps into a single construction, especially if we
start with a set that is not already equipped with a topology. The following lemma
provides a shortcut—it shows how, given a set with suitable “charts” that overlap
smoothly, we can use the charts to define both a topology and a smooth structure on
the set.

Lemma 1.35 (Smooth Manifold Chart Lemma). Let M be a set, and suppose we
are given a collection {Uy} of subsets of M together with maps ¢y : Uy — R", such
that the following properties are satisfied:

(i) For each o, @y is a bijection between Uy and an open subset ¢, (Uy) C R”.
(ii) For each o and B, the sets oo (Uy N Up) and g (Uy N Ug) are open in R™.
(iii) Whenever Uy N Ug # @, the map ¢p o 95" : 9u(Ua N Up) — @ (Uy NUp) is
smooth.
(iv) Countably many of the sets Uy cover M .
(v) Whenever p,q are distinct points in M, either there exists some Uy containing
both p and q or there exist disjoint sets Uy, Ug with p € Uy and q € Ug.

Then M has a unique smooth manifold structure such that each (Uy, ¢y ) is a smooth
chart.



22 1 Smooth Manifolds

Fig. 1.9 The smooth manifold chart lemma

Proof. We define the topology by taking all sets of the form ¢, L(V), with V an
open subset of R”, as a basis. To prove that this is a basis for a topology, we need to
show that for any point p in the intersection of two basis sets ¢, 1 (V) and (plgl w),
there is a third basis set containing p and contained in the intersection. It suffices
to show that ;1 (V) N ga;l (W) is itself a basis set (Fig. 1.9). To see this, observe
that (iii) implies that (goﬂ o %71)—1 (W) is an open subset of ¢, (U, N Ug), and (ii)
implies that this set is also open in R”. It follows that

P (V) Neg' W) =0 (VN (ppogy!) (W)

is also a basis set, as claimed.

Each map ¢, is then a homeomorphism onto its image (essentially by definition),
so M is locally Euclidean of dimension n. The Hausdorff property follows easily
from (v), and second-countability follows from (iv) and the result of Exercise A.22,
because each U, is second-countable. Finally, (iii) guarantees that the collection
{(Uqy, pq)} is a smooth atlas. It is clear that this topology and smooth structure are
the unique ones satisfying the conclusions of the lemma. O

Example 1.36 (Grassmann Manifolds). Let V' be an n-dimensional real vector
space. For any integer 0 < k < n, we let G (V') denote the set of all k-dimensional
linear subspaces of V. We will show that G (V') can be naturally given the struc-
ture of a smooth manifold of dimension k(n — k). With this structure, it is called a
Grassmann manifold, or simply a Grassmannian. In the special case V = R", the
Grassmannian Gy (]R”) is often denoted by some simpler notation such as G , or
G(k,n). Note that G, (]Ri"“) is exactly the n-dimensional projective space RP”.
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The construction of a smooth structure on Gy (V') is somewhat more involved
than the ones we have done so far, but the basic idea is just to use linear algebra
to construct charts for G (V'), and then apply the smooth manifold chart lemma.
We will give a shorter proof that G (V') is a smooth manifold in Chapter 21 (see
Example 21.21).

Let P and Q be any complementary subspaces of V' of dimensions k and n — k,
respectively, so that V' decomposes as a direct sum: V' = P @ Q. The graph of any
linear map X : P — Q can be identified with a k-dimensional subspace I'(X) C V,
defined by

rxX)y={v+Xv:veP}.

Any such subspace has the property that its intersection with Q is the zero subspace.
Conversely, any subspace S C V' that intersects Q trivially is the graph of a unique
linear map X: P — @, which can be constructed as follows: let 7p: V — P
and mp: V — O be the projections determined by the direct sum decomposition;
then the hypothesis implies that 7zp|g is an isomorphism from S to P. Therefore,
X = (wgls)o(mp|s)~! is a well-defined linear map from P to Q, and it is straight-
forward to check that S is its graph.

Let L(P; Q) denote the vector space of linear maps from P to Q, and let
Ug denote the subset of G (V) consisting of k-dimensional subspaces whose
intersections with Q are trivial. The assignment X +— I'(X) defines a map
I': L(P; Q) — Ug, and the discussion above shows that I" is a bijection. Let
¢ =T71: Uy — L(P; Q). By choosing bases for P and Q, we can identify
L(P; Q) with M((n — k) x k,R) and hence with R¥?*=%) and thus we can think of
(Ug, ) as a coordinate chart. Since the image of each such chart is all of L(P; Q),
condition (i) of Lemma 1.35 is clearly satisfied.

Now let (P’, Q’) be any other such pair of subspaces, and let 7wp, 7o+ be the cor-
responding projections and ¢’: Ugr — L(P’; Q') the corresponding map. The set
@(Ug NUgr) CL(P; Q) consists of all linear maps X : P — O whose graphs in-
tersect Q’ trivially. To see that this setis openin L(P; Q), foreach X € L(P; Q), let
Ix: P — V be the map Ix(v) = v + Xv, which is a bijection from P to the graph
of X. Because I'(X) =Im Iy and Q' = Kermp-, it follows from Exercise B.22(d)
that the graph of X intersects Q' trivially if and only if mp/ o Iy has full rank.
Because the matrix entries of wp/ o Iy (with respect to any bases) depend continu-
ously on X, the result of Example 1.28 shows that the set of all such X is open in
L(P; Q). Thus property (ii) in the smooth manifold chart lemma holds.

We need to show that the transition map ¢’ o ¢! is smooth on ¢(Ug N Ug/).
Suppose X € p(Up N Ug’) € L(P; Q) is arbitrary, and let S denote the subspace
[(X)CV.If weput X’ = ¢’ 0@ 1(X), then as above, X' = (rg/|s) o (mp/|s) "
(see Fig. 1.10). To relate this map to X, note that Iy : P — § is an isomorphism, so
we can write

X/ = (]TQ/|S) o] IX o] (Ix)_l o (jTP/ls)_l = (]‘[Q/ () Ix) o) (jTP/ o] Ix)_l,
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Fig. 1.10  Smooth compatibility of coordinates on Gk (V')

To show that this depends smoothly on X, define linear maps A: P — P/,
B:P—Q,C:Q—P,and D: Q — Q’ as follows:

A=7TP/

P B=J‘[Q/|P, C =mps 0 D=JTQ/|Q.

Then for v € P, we have
(mprolx)v=(A+ CX)v, (mgroIx)v= (B + DX)v,

from which it follows that X’ = (B + DX)(A4 + CX)~!. Once we choose bases
for P, Q, P’,and Q’, all of these linear maps are represented by matrices. Because
the matrix entries of (A4 + CX)~! are rational functions of those of 4 + CX by
Cramer’s rule, it follows that the matrix entries of X’ depend smoothly on those of
X . This proves that ¢’ o ¢! is a smooth map, so the charts we have constructed
satisfy condition (iii) of Lemma 1.35.

To check condition (iv), we just note that G (V') can in fact be covered by finitely
many of the sets Ug: for example, if (Ei,..., E,) is any fixed basis for V, any
partition of the basis elements into two subsets containing k and n — k elements
determines appropriate subspaces P and @, and any subspace S must have trivial
intersection with Q for at least one of these partitions (see Exercise B.9). Thus,
Gy (V) is covered by the finitely many charts determined by all possible partitions
of a fixed basis.

Finally, the Hausdorff condition (v) is easily verified by noting that for any two k-
dimensional subspaces P, P’ C V, it is possible to find a subspace Q of dimension
n — k whose intersections with both P and P’ are trivial, and then P and P’ are
both contained in the domain of the chart determined by, say, (P, Q). /

Manifolds with Boundary

In many important applications of manifolds, most notably those involving integra-
tion, we will encounter spaces that would be smooth manifolds except that they
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Fig. 1.11 A manifold with boundary

have a “boundary” of some sort. Simple examples of such spaces include closed
intervals in R, closed balls in R”, and closed hemispheres in S”. To accommodate
such spaces, we need to extend our definition of manifolds.

Points in these spaces will have neighborhoods modeled either on open subsets
of R” or on open subsets of the closed n-dimensional upper half-space H" C R",
defined as

H" = {(xl,...,x") eR": x" 20}.
We will use the notations Int H” and dH" to denote the interior and boundary of H",
respectively, as a subset of R”. When n > 0, this means

Int H” ={(x1,...,x")e]R” i x" >0},
oH" ={(x1,...,x”)eR”:x”=O}.

In the n = 0 case, H? = R? = {0}, so Int H® = R? and 0H° = @.

An n-dimensional topological manifold with boundary is a second-countable
Hausdorff space M in which every point has a neighborhood homeomorphic either
to an open subset of R” or to a (relatively) open subset of H” (Fig. 1.11). An open
subset U € M together with a map ¢: U — R” that is a homeomorphism onto an
open subset of R” or H" will be called a chart for M , just as in the case of man-
ifolds. When it is necessary to make the distinction, we will call (U, ¢) an interior
chart if (U) is an open subset of R” (which includes the case of an open subset
of H" that does not intersect dH"), and a boundary chart if ¢(U) is an open subset
of H" such that ¢(U) N dH" # &. A boundary chart whose image is a set of the
form B, (x) N H" for some x € 0H" and r > 0 is called a coordinate half-ball.

A point p € M is called an interior point of M if it is in the domain of some
interior chart. It is a boundary point of M if it is in the domain of a boundary chart
that sends p to 0H". The boundary of M (the set of all its boundary points) is
denoted by dM ; similarly, its interior, the set of all its interior points, is denoted by
IntM.

It follows from the definition that each point p € M is either an interior point or a
boundary point: if p is not a boundary point, then either it is in the domain of an in-
terior chart or it is in the domain of a boundary chart (U, ¢) such that ¢(p) ¢ 0H",
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in which case the restriction of ¢ to U N go_l(IntH") is an interior chart whose
domain contains p. However, it is not obvious that a given point cannot be simulta-
neously an interior point with respect to one chart and a boundary point with respect
to another. In fact, this cannot happen, but the proof requires more machinery than
we have available at this point. For convenience, we state the theorem here.

Theorem 1.37 (Topological Invariance of the Boundary). If M is a topological
manifold with boundary, then each point of M is either a boundary point or an
interior point, but not both. Thus IM and Int M are disjoint sets whose union is M .

For the proof, see Problem 17-9. Later in this chapter, we will prove a weaker
version of this result for smooth manifolds with boundary (Theorem 1.46), which
will be sufficient for most of our purposes.

Be careful to observe the distinction between these new definitions of the terms
boundary and interior and their usage to refer to the boundary and interior of a sub-
set of a topological space. A manifold with boundary may have nonempty boundary
in this new sense, irrespective of whether it has a boundary as a subset of some other
topological space. If we need to emphasize the difference between the two notions
of boundary, we will use the terms topological boundary and manifold boundary
as appropriate. For example, the closed unit ball B” is a manifold with boundary
(see Problem 1-11), whose manifold boundary is S*~!. Its topological boundary as
a subset of R” happens to be the sphere as well. However, if we think of B" as
a topological space in its own right, then as a subset of itself, it has empty topo-
logical boundary. And if we think of it as a subset of R"*! (considering R” as a
subset of R”*1 in the obvious way), its topological boundary is all of B". Note that
H" is itself a manifold with boundary, and its manifold boundary is the same as its
topological boundary as a subset of R”. Every interval in R is a 1-manifold with
boundary, whose manifold boundary consists of its endpoints (if any).

The nomenclature for manifolds with boundary is traditional and well estab-
lished, but it must be used with care. Despite their name, manifolds with boundary
are not in general manifolds, because boundary points do not have locally Euclidean
neighborhoods. (This is a consequence of the theorem on invariance of the bound-
ary.) Moreover, a manifold with boundary might have empty boundary—there is
nothing in the definition that requires the boundary to be a nonempty set. On the
other hand, a manifold is also a manifold with boundary, whose boundary is empty.
Thus, every manifold is a manifold with boundary, but a manifold with boundary is
a manifold if and only if its boundary is empty (see Proposition 1.38 below).

Even though the term manifold with boundary encompasses manifolds as well,
we will often use redundant phrases such as manifold without boundary if we wish
to emphasize that we are talking about a manifold in the original sense, and man-
ifold with or without boundary to refer to a manifold with boundary if we wish
emphasize that the boundary might be empty. (The latter phrase will often appear
when our primary interest is in manifolds, but the results being discussed are just as
easy to state and prove in the more general case of manifolds with boundary.) Note
that the word “manifold” without further qualification always means a manifold
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without boundary. In the literature, you will also encounter the terms closed mani-
Jfold to mean a compact manifold without boundary, and open manifold to mean a
noncompact manifold without boundary.

Proposition 1.38. Let M be a topological n-manifold with boundary.

(a) Int M is an open subset of M and a topological n-manifold without boundary.

(b) dM is a closed subset of M and a topological (n — 1)-manifold without
boundary.

(¢) M is a topological manifold if and only if IM = @.

(d) Ifn =0, then 0IM = & and M is a O-manifold.

» Exercise 1.39. Prove the preceding proposition. For this proof, you may use the
theorem on topological invariance of the boundary when necessary. Which parts re-
quire it?

The topological properties of manifolds that we proved earlier in the chapter have
natural extensions to manifolds with boundary, with essentially the same proofs as
in the manifold case. For the record, we state them here.

Proposition 1.40. Let M be a topological manifold with boundary.

(@) M has a countable basis of precompact coordinate balls and half-balls.

(b) M is locally compact.

(c) M is paracompact.

(d) M is locally path-connected.

(e) M has countably many components, each of which is an open subset of M and
a connected topological manifold with boundary.

(f) The fundamental group of M is countable.

» Exercise 1.41. Prove the preceding proposition.

Smooth Structures on Manifolds with Boundary

To see how to define a smooth structure on a manifold with boundary, recall that a
map from an arbitrary subset 4 € R” to R¥ is said to be smooth if in a neighbor-
hood of each point of A it admits an extension to a smooth map defined on an open
subset of R” (see Appendix C, p. 645). Thus, if U is an open subset of H", a map
F: U — R¥ is smooth if for each x € U, there exists an open subset U CR" con-
taining x and a smooth map F: U — RF that agrees with F on UnH" (Fig. 1.12).
If F is such a map, the restriction of F to U N IntH” is smooth in the usual sense.
By continuity, all partial derivatives of F at points of U N dH" are determined by
their values in IntH”, and therefore in particular are independent of the choice of
extension. It is a fact (which we will neither prove nor use) that F': U — R¥ is
smooth in this sense if and only if F is continuous, F|ynamm» iS smooth, and the
partial derivatives of F |y m» of all orders have continuous extensions to all of U'.
(One direction is obvious; the other direction depends on a lemma of Emile Borel,
which shows that there is a smooth function defined in the lower half-space whose
derivatives all match those of F on U N dH". See, e.g., [H6r90, Thm. 1.2.6].)
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Fig. 1.12 Smoothness of maps on open subsets of H"

For example, let B2 C R? be the open unit disk, let U = B2 N H?, and define
f:U—Rby f(x,y) = /1 —x2— y2. Because f extends smoothly to all of B?
(by the same formula), f is a smooth function on U. On the other hand, although
g(x,y) = ,/y is continuous on U and smooth in U N Int H?2, it has no smooth
extension to any neighborhood of the origin in R? because dg/dy — oo as y — 0.
Thus g is not smooth on U'.

Now let M be a topological manifold with boundary. As in the manifold case,
a smooth structure for M is defined to be a maximal smooth atlas—a collection
of charts whose domains cover M and whose transition maps (and their inverses)
are smooth in the sense just described. With such a structure, M is called a smooth
manifold with boundary. Every smooth manifold is automatically a smooth mani-
fold with boundary (whose boundary is empty).

Just as for smooth manifolds, if M is a smooth manifold with boundary, any
chart in the given smooth atlas is called a smooth chart for M . Smooth coordinate
balls, smooth coordinate half-balls, and regular coordinate balls in M are defined
in the obvious ways. In addition, a subset B € M is called a regular coordinate
half-ball if there is a smooth coordinate half-ball B’ D B and a smooth coordinate
map ¢: B’ — H" such that for some 7’ > r > 0 we have

¢(B) = B,(0) N H", ¢(B)=B,(0)NH", and ¢(B')=B,(0)NH".

» Exercise 1.42. Show that every smooth manifold with boundary has a countable
basis consisting of regular coordinate balls and half-balls.

» Exercise 1.43. Show that the smooth manifold chart lemma (Lemma 1.35) holds
with “R”” replaced by “R” or H”” and “smooth manifold” replaced by “smooth
manifold with boundary.”

» Exercise 1.44. Suppose M is a smooth n-manifold with boundary and U is an
open subset of M. Prove the following statements:

(a) U is atopological n-manifold with boundary, and the atlas consisting of all smooth
charts (V, ) for M such that V' C U defines a smooth structure on U. With this
topology and smooth structure, U is called an open submanifold with boundary.

(b) If U C IntM, then U is actually a smooth manifold (without boundary); in this
case we call it an open submanifold of M .

(c) IntM is an open submanifold of M (without boundary).
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One important result about smooth manifolds that does not extend directly to
smooth manifolds with boundary is the construction of smooth structures on finite
products (see Example 1.8). Because a product of half-spaces H" x H™ is not itself
a half-space, a finite product of smooth manifolds with boundary cannot generally
be considered as a smooth manifold with boundary. (Instead, it is an example of a
smooth manifold with corners, which we will study in Chapter 16.) However, we do
have the following result.

Proposition 1.45. Suppose M., ..., My are smooth manifolds and N is a smooth
manifold with boundary. Then My X --- X My X N is a smooth manifold with bound-
ary,and O(My x -+ X My x N) = My x --- X M}y x ON.

Proof. Problem 1-12. O

For smooth manifolds with boundary, the following result is often an adequate
substitute for the theorem on invariance of the boundary.

Theorem 1.46 (Smooth Invariance of the Boundary). Suppose M is a smooth
manifold with boundary and p € M. If there is some smooth chart (U, @) for M
such that o(U) C H" and ¢(p) € 0H", then the same is true for every smooth chart
whose domain contains p.

Proof. Suppose on the contrary that p is in the domain of a smooth interior chart
(U, V) and also in the domain of a smooth boundary chart (V, ¢) such that ¢(p) €
OH". Let T = ¢ o ! denote the transition map; it is a homeomorphism from
Yy (U NV)toeU NV). The smooth compatibility of the charts ensures that both ©
and 7! are smooth, in the sense that locally they can be extended, if necessary, to
smooth maps defined on open subsets of R”.

Write xo = ¥ (p) and yo = ¢(p) = t(x¢). There is some neighborhood W of y,
in R” and a smooth function n: W — R” that agrees with 7™! on W N (U N'V).
On the other hand, because we are assuming that ¥ is an interior chart, there is
an open Euclidean ball B that is centered at x¢ and contained in ¢(U N V), so t
itself is smooth on B in the ordinary sense. After shrinking B if necessary, we may
assume that B C v~} (W). Then no t|p = ! o t|p = Idp, so it follows from the
chain rule that Dn(z(x)) o Dt(x) is the identity map for each x € B. Since Dt (x)
is a square matrix, this implies that it is nonsingular. It follows from Corollary C.36
that t (considered as a map from B to R”) is an open map, so t(B) is an open
subset of R” that contains yy = ¢(p) and is contained in ¢(1'). This contradicts the
assumption that ¢(V') € H” and ¢(p) € dH". O

Problems

1-1. Let X be the set of all points (x,y) € R? such that y = %1, and let M be
the quotient of X by the equivalence relation generated by (x,—1) ~ (x, 1)
for all x # 0. Show that M is locally Euclidean and second-countable, but
not Hausdorff. (This space is called the line with two origins.)
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1-2.

1-3.

1-4.

1-5.

1-6.

1-7.

1 Smooth Manifolds

Show that a disjoint union of uncountably many copies of R is locally
Euclidean and Hausdorff, but not second-countable.

A topological space is said to be o-compact if it can be expressed as
a union of countably many compact subspaces. Show that a locally Eu-
clidean Hausdorff space is a topological manifold if and only if it is o-
compact.

Let M be a topological manifold, and let U be an open cover of M.

(a) Assuming that each set in U intersects only finitely many others, show
that U is locally finite.

(b) Give an example to show that the converse to (a) may be false.

(c) Now assume that the sets in U are precompact in M, and prove the con-
verse: if U is locally finite, then each set in U intersects only finitely
many others.

Suppose M is a locally Euclidean Hausdorff space. Show that M is second-
countable if and only if it is paracompact and has countably many connected
components. [Hint: assuming M is paracompact, show that each component
of M has a locally finite cover by precompact coordinate domains, and ex-
tract from this a countable subcover.]

Let M be a nonempty topological manifold of dimension n > 1. If M has
a smooth structure, show that it has uncountably many distinct ones. [Hint:
first show that for any s > 0, Fy(x) = |x|*"!x defines a homeomorphism
from B” to itself, which is a diffeomorphism if and only if s = 1.]

Let N denote the north pole (0,...,0,1) € S* € R**!, and let S de-
note the south pole (0,...,0,—1). Define the stereographic projection
o:S"~{N}—R" by

1 n
1 nil (x*, ..., x™)
O'(.X',...,.X ) W

Leto(x) = —o(—x) for x € S" ~ {S}.

(a) For any x € S” ~ {N}, show that o(x) = u, where (u,0) is the point
where the line through N and x intersects the linear subspace where
x"*T1 =0 (Fig. 1.13). Similarly, show that &(x) is the point where the
line through S and x intersects the same subspace. (For this reason, &
is called stereographic projection from the south pole.)

(b) Show that o is bijective, and

Qul,....2u™ [ul>—1)
[u]?2 +1

o (', u") =

(c) Compute the transition map & o o~ ! and verify that the atlas consisting
of the two charts (S” ~ {N},0) and (S” ~ {S},5) defines a smooth
structure on S”. (The coordinates defined by ¢ or ¢ are called stereo-
graphic coordinates.)

(d) Show that this smooth structure is the same as the one defined in
Example 1.31.

(Used on pp. 201, 269, 301, 345, 347, 450.)
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1-8.

1-9.

Fig. 1.13 Stereographic projection

By identifying R? with C, we can think of the unit circle S! as a subset of
the complex plane. An angle function on a subset U € S! is a continuous
function #: U — R such that ¢'??) = z for all z € U. Show that there exists
an angle function 6 on an open subset U C S! if and only if U # S!. For
any such angle function, show that (U, 0) is a smooth coordinate chart for
S! with its standard smooth structure. (Used on pp- 37, 152, 176.)
Complex projective n-space, denoted by CIP”, is the set of all 1-dimensional
complex-linear subspaces of C**!, with the quotient topology inherited
from the natural projection 7: C**1 < {0} — CP”". Show that CP”" is a
compact 2n-dimensional topological manifold, and show how to give it a
smooth structure analogous to the one we constructed for RP”. (We use the
correspondence

(P iyt xM i) o ()

to identify C"*1 with R2"+2.) (Used on pp. 48, 96, 172, 560, 561.)

. Let k and n be integers satisfying 0 < k < n, and let P, Q C R” be the

linear subspaces spanned by (eq,...,ex) and (ex+1,-..,e,), respectively,
where e; is the i th standard basis vector for R”. For any k-dimensional sub-
space S € R” that has trivial intersection with Q, show that the coordinate
representation ¢(.S) constructed in Example 1.36 is the unique (n — k) x k
matrix B such that S is spanned by the columns of the matrix (Ié‘ ), where
I}, denotes the k x k identity matrix.

. Let M =B", the closed unit ball in R”. Show that M is a topological man-

ifold with boundary in which each point in S”~! is a boundary point and
each point in B” is an interior point. Show how to give it a smooth struc-
ture such that every smooth interior chart is a smooth chart for the standard
smooth structure on B”. [Hint: consider the map 7 o o~ !l: R" - R", where
o: S"™ — R” is the stereographic projection (Problem 1-7) and 7 is a pro-
jection from R”*! to R” that omits some coordinate other than the last.]

. Prove Proposition 1.45 (a product of smooth manifolds together with one

smooth manifold with boundary is a smooth manifold with boundary).



Chapter 2
Smooth Maps

The main reason for introducing smooth structures was to enable us to define smooth
functions on manifolds and smooth maps between manifolds. In this chapter we
carry out that project.

We begin by defining smooth real-valued and vector-valued functions, and then
generalize this to smooth maps between manifolds. We then focus our attention for
a while on the special case of diffeomorphisms, which are bijective smooth maps
with smooth inverses. If there is a diffeomorphism between two smooth manifolds,
we say that they are diffeomorphic. The main objects of study in smooth manifold
theory are properties that are invariant under diffeomorphisms.

At the end of the chapter, we introduce a powerful tool for blending together
locally defined smooth objects, called partitions of unity. They are used throughout
smooth manifold theory for building global smooth objects out of local ones.

Smooth Functions and Smooth Maps

Although the terms function and map are technically synonymous, in studying
smooth manifolds it is often convenient to make a slight distinction between them.
Throughout this book we generally reserve the term function for a map whose
codomain is R (a real-valued function) or R* for some k > 1 (a vector-valued
Jfunction). Either of the words map or mapping can mean any type of map, such as
a map between arbitrary manifolds.

Smooth Functions on Manifolds

Suppose M is a smooth n-manifold, k is a nonnegative integer, and f: M — R¥
is any function. We say that f is a smooth function if for every p € M, there exists
a smooth chart (U, ¢) for M whose domain contains p and such that the composite
function f o ¢~! is smooth on the open subset U= o(U) CR” (Fig. 2.1). If M
is a smooth manifold with boundary, the definition is exactly the same, except that

J.M. Lee, Introduction to Smooth Manifolds, Graduate Texts in Mathematics 218, 32
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Rk

U

Fig. 2.1 Definition of smooth functions

¢(U) is now an open subset of either R” or H", and in the latter case we interpret
smoothness of f o@~! to mean that each point of ¢(U) has a neighborhood (in R”)
on which f o ¢~! extends to a smooth function in the ordinary sense.

The most important special case is that of smooth real-valued functions f: M —
R; the set of all such functions is denoted by C°°(M). Because sums and constant
multiples of smooth functions are smooth, C (M) is a vector space over R.

» Exercise 2.1. Let M be a smooth manifold with or without boundary. Show that
pointwise multiplication turns C°°(M) into a commutative ring and a commutative
and associative algebra over R. (See Appendix B, p. 624, for the definition of an alge-
bra.)

» Exercise 2.2. Let U be an open submanifold of R” with its standard smooth man-
ifold structure. Show that a function f: U — R¥ is smooth in the sense just defined
if and only if it is smooth in the sense of ordinary calculus. Do the same for an open
submanifold with boundary in H” (see Exercise 1.44).

» Exercise 2.3. Let M be a smooth manifold with or without boundary, and suppose
fiM— R¥ is a smooth function. Show that fop~l:@U) — R¥ is smooth for
every smooth chart (U, ¢) for M.

Given a function f: M — R¥ and a chart (U,g) for M, the function
f : (U) — R¥ defined by f (x) = f o @~ (x) is called the coordinate represen-
tation of f . By definition, f is smooth if and only if its coordinate representation is
smooth in some smooth chart around each point. By the preceding exercise, smooth
functions have smooth coordinate representations in every smooth chart.

For example, consider the real-valued function f(x, y) = x? + y? defined on the
plane. In polar coordinates on, say, the set U = {(x, y) : x > 0}, it has the coordinate
representation f (r.0) = r2. In keeping with our practice of using local coordinates
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Fig. 2.2 Definition of smooth maps

to identify an open subset of a manifold with an open subset of Euclidean space,
in cases where it causes no confusion we often do not even observe the distinction
between f and f itself, and instead say something like “ f is smooth on U because
its coordinate representation f(r,#) = r? is smooth.”

Smooth Maps Between Manifolds

The definition of smooth functions generalizes easily to maps between manifolds.
Let M, N be smooth manifolds, and let F': M — N be any map. We say that F
is a smooth map if for every p € M, there exist smooth charts (U, ¢) containing p
and (V,¥) containing F(p) such that F(U) € V and the composite map ¥ o F o
¢~ ! is smooth from ¢(U) to ¥ (V) (Fig. 2.2). If M and N are smooth manifolds
with boundary, smoothness of F' is defined in exactly the same way, with the usual
understanding that a map whose domain is a subset of H” is smooth if it admits
an extension to a smooth map in a neighborhood of each point, and a map whose
codomain is a subset of H" is smooth if it is smooth as a map into R”. Note that our
previous definition of smoothness of real-valued or vector-valued functions can be
viewed as a special case of this one, by taking N = V = R¥ and = Id: R¥ — R¥,

The first important observation about our definition of smooth maps is that, as
one might expect, smoothness implies continuity.

Proposition 2.4. Every smooth map is continuous.

Proof. Suppose M and N are smooth manifolds with or without boundary, and
F: M — N is smooth. Given p € M, smoothness of F means there are smooth
charts (U, ¢) containing p and (V, ) containing F(p), such that F(U) € V and
YoFop™!: p(U)— y(V)is smooth, hence continuous. Since ¢: U — ¢(U) and
Y : V — (V) are homeomorphisms, this implies in turn that

Flu=y 'o(yoFop )op:U—V,
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which is a composition of continuous maps. Since F is continuous in a neighbor-
hood of each point, it is continuous on M . |

To prove that amap F: M — N is smooth directly from the definition requires,
in part, that for each p € M we prove the existence of coordinate domains U con-
taining p and V containing F(p) such that F(U) C V. This requirement is in-
cluded in the definition precisely so that smoothness automatically implies conti-
nuity. (Problem 2-1 illustrates what can go wrong if this requirement is omitted.)
There are other ways of characterizing smoothness of maps between manifolds that
accomplish the same thing. Here are two of them.

Proposition 2.5 (Equivalent Characterizations of Smoothness). Suppose M and
N are smooth manifolds with or without boundary, and F: M — N is a map. Then
F is smooth if and only if either of the following conditions is satisfied:

(a) For every p € M, there exist smooth charts (U, @) containing p and (V,v)
containing F(p) such that U N F~Y(V) is open in M and the composite map
Vo F og~ ! is smooth from <p(U N F_I(V)) to g (V).

(b) F is continuous and there exist smooth atlases {(Uy, o)} and {(Vg,¥p)} for
M and N, respectively, such that for each a and B, g o F o @y Uis a smooth
map from (pa(Ua nF-1 (Vﬂ)) to yg(Vg).

Proposition 2.6 (Smoothness Is Local). Ler M and N be smooth manifolds with
or without boundary, and let F: M — N be a map.

(a) If every point p € M has a neighborhood U such that the restriction F|y is
smooth, then F is smooth.
(b) Conversely, if I is smooth, then its restriction to every open subset is smooth.

» Exercise 2.7. Prove the preceding two propositions.

The next corollary is essentially just a restatement of the previous proposition,
but it gives a highly useful way of constructing smooth maps.

Corollary 2.8 (Gluing Lemma for Smooth Maps). Let M and N be smooth man-
ifolds with or without boundary, and let {Uy}ye 4 be an open cover of M . Suppose
that for each a € A, we are given a smooth map F,: Uy — N such that the maps
agree on overlaps: Fylu,nus = Fgluynug for all a and B. Then there exists a
unique smooth map F: M — N such that F |y, = Fy for each o € A. O

If F: M — N is a smooth map, and (U, ¢) and (V, ) are any smooth charts
for M and N, respectively, we call F =y o F o ¢! the coordinate representation
of F with respect to the given coordinates. It maps the set (p(U NnF _1(V)) to

(V).

» Exercise 2.9. Suppose F: M — N is a smooth map between smooth manifolds
with or without boundary. Show that the coordinate representation of F with respect
to every pair of smooth charts for M and N is smooth.



36 2 Smooth Maps

F G
— A —

foFop™! YoGofh!
o(U) ‘

Fig. 2.3 A composition of smooth maps is smooth

As with real-valued or vector-valued functions, once we have chosen specific
local coordinates in both the domain and codomain, we can often ignore the distinc-
tion between F and F.

Next we examine some simple classes of maps that are automatically smooth.

Proposition 2.10. Let M, N, and P be smooth manifolds with or without bound-
ary.

(a) Every constant map c: M — N is smooth.

(b) The identity map of M is smooth.

(c) If U C M is an open submanifold with or without boundary, then the inclusion
map U — M is smooth.

D IfF: M — N and G: N — P are smooth, then sois Go F: M — P.

Proof. We prove (d) and leave the rest as exercises. Let F: M — N and G: N —
P be smooth maps, and let p € M. By definition of smoothness of G, there exist
smooth charts (V,6) containing F(p) and (W, ) containing G(F(p)) such that
G(V)C W and ¥ o G o 871: (V) — (W) is smooth. Since F is continuous,
F~1(V) is a neighborhood of p in M, so there is a smooth chart (U, ¢) for M
such that p € U € F~1(V) (Fig. 2.3). By Exercise 2.9, # o F o ¢! is smooth from
@(U) to O(V). Then we have G o F(U)C G(V) S W,and Yy o (Go F)ogp™ ! =
(VoGob ™) o(oFop™): o(U) — ¢ (W) is smooth because it is a composition
of smooth maps between subsets of Euclidean spaces. O

» Exercise 2.11. Prove parts (a)—(c) of the preceding proposition.

Proposition 2.12. Suppose M1, ..., My and N are smooth manifolds with or with-
out boundary, such that at most one of M1, ..., My has nonempty boundary. For
each i, let wj: My X -+ x My — M; denote the projection onto the M; factor.
Amap F: N — M; X ---xX My is smooth if and only if each of the component maps
F,=m; 0 F: N — M; is smooth.
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Proof. Problem 2-2. O

Although most of our efforts in this book are devoted to the study of smooth
manifolds and smooth maps, we also need to work with topological manifolds and
continuous maps on occasion. For the sake of consistency, we adopt the following
conventions: without further qualification, the words “function” and “map” are to be
understood purely in the set-theoretic sense, and carry no assumptions of continuity
or smoothness. Most other objects we study, however, will be understood to carry
some minimal topological structure by default. Unless otherwise specified, a “man-
ifold” or “manifold with boundary” is always to be understood as a topological one,
and a “coordinate chart” is to be understood in the topological sense, as a homeo-
morphism from an open subset of the manifold to an open subset of R” or H”. If
we wish to restrict attention to smooth manifolds or smooth coordinate charts, we
will say so. Similarly, our default assumptions for many other specific types of ge-
ometric objects and the maps between them will be continuity at most; smoothness
will not be assumed unless explicitly specified. The only exceptions will be a few
concepts that require smoothness for their very definitions.

This convention requires a certain discipline, in that we have to remember to state
the smoothness hypothesis whenever it is needed; but its advantage is that it frees
us (for the most part) from having to remember which types of maps are assumed
to be smooth and which are not.

On the other hand, because the definition of a smooth map requires smooth struc-
tures in the domain and codomain, if we say “F: M — N is a smooth map” without
specifying what M and N are, it should always be understood that they are smooth
manifolds with or without boundaries.

We now have enough information to produce a number of interesting examples
of smooth maps. In spite of the apparent complexity of the definition, it is usually
not hard to prove that a particular map is smooth. There are basically only three
common ways to do so:

e Write the map in smooth local coordinates and recognize its component functions
as compositions of smooth elementary functions.

o Exhibit the map as a composition of maps that are known to be smooth.

e Use some special-purpose theorem that applies to the particular case under con-
sideration.

Example 2.13 (Smooth Maps).

(a) Any map from a zero-dimensional manifold into a smooth manifold with or
without boundary is automatically smooth, because each coordinate representa-
tion is constant.

(b) If the circle S! is given its standard smooth structure, the map &: R — S!
defined by £(¢) = e?"'! is smooth, because with respect to any angle coordi-
nate @ for S! (see Problem 1-8) it has a coordinate representation of the form
&(t) = 2wt + ¢ for some constant ¢, as you can check.

(c) The map &": R” — T" defined by sn(xl,...,x") = (e2”"xl,...,e2”"x”) is
smooth by Proposition 2.12.
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(d) Now consider the n-sphere S” with its standard smooth structure. The inclusion
map ¢: S” < R"*1 is certainly continuous, because it is the inclusion map of a
topological subspace. It is a smooth map because its coordinate representation
with respect to any of the graph coordinates of Example 1.31 is

“ -1
T(u's...ou") =LO((pii) (u',....u")
= (ul,...,ui_l,:lz 1— |u|2,ui,...,u”),
which is smooth on its domain (the set where |u|? < 1).
(e) The quotient map 7: R”T1 < {0} — RP” used to define RP” is smooth, be-

cause its coordinate representation in terms of any of the coordinates for RP”
constructed in Example 1.33 and standard coordinates on R”*! < {0} is

ft(xl,...,x”H) =@ on(xl,...,x”+1) = [xl,...,x”H]

! w1 it ot
= F,..., xi s xi RPN xi .
(f) Define g: S” — RP” as the restriction of 7: R*T! < {0} — RP” to S" C

R”*1 < {0}. It is a smooth map, because it is the composition ¢ = 7 o ¢ of the
maps in the preceding two examples.

(g) If My,..., M} are smooth manifolds, then each projection map m; : M; X -+ X
Mj; — M; is smooth, because its coordinate representation with respect to any
of the product charts of Example 1.8 is just a coordinate projection. /

Diffeomorphisms

If M and N are smooth manifolds with or without boundary, a diffeomorphism
Jrom M to N is a smooth bijective map F: M — N that has a smooth inverse.
We say that M and N are diffeomorphic if there exists a diffeomorphism between
them. Sometimes this is symbolized by M ~ N.

Example 2.14 (Diffeomorphisms).
(a) Consider the maps F: B"” — R" and G: R" — B” given by
Y

X
V1= VI+DP?

These maps are smooth, and it is straightforward to compute that they are in-
verses of each other. Thus they are both diffeomorphisms, and therefore B” is
diffeomorphic to R”.

(b) If M is any smooth manifold and (U, ¢) is a smooth coordinate chart on M,
then ¢: U — ¢(U) C R” is a diffeomorphism. (In fact, it has an identity map
as a coordinate representation.) I

F(x)=

G(y)= (2.1
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Proposition 2.15 (Properties of Diffeomorphisms).

(a) Every composition of diffeomorphisms is a diffeomorphism.

(b) Every finite product of diffeomorphisms between smooth manifolds is a diffeo-
morphism.

(c) Every diffeomorphism is a homeomorphism and an open map.

(d) The restriction of a diffeomorphism to an open submanifold with or without
boundary is a diffeomorphism onto its image.

(e) “Diffeomorphic” is an equivalence relation on the class of all smooth manifolds
with or without boundary.

» Exercise 2.16. Prove the preceding proposition.

The following theorem is a weak version of invariance of dimension, which suf-
fices for many purposes.

Theorem 2.17 (Diffeomorphism Invariance of Dimension). A nonempty smooth
manifold of dimension m cannot be diffeomorphic to an n-dimensional smooth
manifold unless m = n.

Proof. Suppose M is a nonempty smooth m-manifold, N is a nonempty smooth 7-
manifold, and F: M — N is a diffeomorphism. Choose any point p € M, and let
(U, ¢) and (V, ) be smooth coordinate charts containing p and F(p), respectively.
Then (the restriction of) F = Y o F o~ ! is a diffeomorphism from an open subset
of R™ to an open subset of R”, so it follows from Proposition C.4 that m =n. O

There is a similar invariance statement for boundaries.

Theorem 2.18 (Diffeomorphism Invariance of the Boundary). Suppose M and
N are smooth manifolds with boundary and F: M — N is a diffeomorphism. Then
F(OM) = 0N, and F restricts to a diffeomorphism from Int M to Int N .

» Exercise 2.19. Use Theorem 1.46 to prove the preceding theorem.

Just as two topological spaces are considered to be “the same” if they are home-
omorphic, two smooth manifolds with or without boundary are essentially indistin-
guishable if they are diffeomorphic. The central concern of smooth manifold theory
is the study of properties of smooth manifolds that are preserved by diffeomor-
phisms. Theorem 2.17 shows that dimension is one such property.

It is natural to wonder whether the smooth structure on a given topological mani-
fold is unique. This straightforward version of the question is easy to answer: we ob-
served in Example 1.21 that every zero-dimensional manifold has a unique smooth
structure, but as Problem 1-6 showed, each positive-dimensional manifold admits
many distinct smooth structures as soon as it admits one.

A more subtle and interesting question is whether a given topological mani-
fold admits smooth structures that are not diffeomorphic to each other. For ex-
ample, let R denote the topological manifold R, but endowed with the smooth
structure described in Example 1.23 (defined by the global chart ¥ (x) = x3). It
turns out that R is diffeomorphic to R with its standard smooth structure. Define
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amap F: R — R by F(x) = x'/3. The coordinate representation of this map is
Ft)=voFo Idﬂ_gl(t) = t, which is clearly smooth. Moreover, the coordinate
representation of its inverse is

Fl(y)=IldgroFtoy~l(y) =y,

which is also smooth, so F' is a diffeomorphism. (This is a case in which it is impor-
tant to maintain the distinction between a map and its coordinate representation!)

In fact, as you will see later, there is only one smooth structure on R up to diffeo-
morphism (see Problem 15-13). More precisely, if 4, and 4, are any two smooth
structures on R, there exists a diffeomorphism F: (R, A1) — (R, 4,). In fact, it
follows from work of James Munkres [Mun60] and Edwin Moise [Moi77] that every
topological manifold of dimension less than or equal to 3 has a smooth structure that
is unique up to diffeomorphism. The analogous question in higher dimensions turns
out to be quite deep, and is still largely unanswered. Even for Euclidean spaces,
the question of uniqueness of smooth structures was not completely settled until
late in the twentieth century. The answer is surprising: as long as n # 4, R” has
a unique smooth structure (up to diffeomorphism); but R* has uncountably many
distinct smooth structures, no two of which are diffeomorphic to each other! The ex-
istence of nonstandard smooth structures on R* (called fake R*’) was first proved
by Simon Donaldson and Michael Freedman in 1984 as a consequence of their work
on the geometry and topology of compact 4-manifolds; the results are described in
[DK90] and [FQ90].

For compact manifolds, the situation is even more fascinating. In 1956, John
Milnor [Mil56] showed that there are smooth structures on S’ that are not diffeo-
morphic to the standard one. Later, he and Michel Kervaire [KM63] showed (using
a deep theorem of Steve Smale [Sma62]) that there are exactly 15 diffeomorphism
classes of such structures (or 28 classes if you restrict to diffeomorphisms that pre-
serve a property called orientation, which will be discussed in Chapter 15).

On the other hand, in all dimensions greater than 3 there are compact topological
manifolds that have no smooth structures at all. The problem of identifying the
number of smooth structures (if any) on topological 4-manifolds is an active subject
of current research.

Partitions of Unity

A frequently used tool in topology is the gluing lemma (Lemma A.20), which shows
how to construct continuous maps by “gluing together” maps defined on open or
closed subsets. We have a version of the gluing lemma for smooth maps defined
on open subsets (Corollary 2.8), but we cannot expect to glue together smooth maps
defined on closed subsets and obtain a smooth result. For example, the two functions
f+:[0,00) > R and f_: (—00,0] — R defined by

fr() =+x, xel0.00),
fo(x)=—x, xé€(—00,0],
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are both smooth and agree at the point O where they overlap, but the continuous
function f: R — R that they define, namely f(x) = |x|, is not smooth at the origin.

A disadvantage of Corollary 2.8 is that in order to use it, we must construct maps
that agree exactly on relatively large subsets of the manifold, which is too restrictive
for some purposes. In this section we introduce partitions of unity, which are tools
for “blending together” local smooth objects into global ones without necessarily
assuming that they agree on overlaps. They are indispensable in smooth manifold
theory and will reappear throughout the book.

All of our constructions in this section are based on the existence of smooth
functions that are positive in a specified part of a manifold and identically zero in
some other part. We begin by defining a smooth function on the real line that is zero
for ¢ <0 and positive for ¢ > 0.

Lemma 2.20. The function f: R — R defined by

eVt >0,

fo) = 0. L <0,

is smooth.

Proof. The function in question is pictured in Fig. 2.4. It is smooth on R ~ {0} by
composition, so we need only show f has continuous derivatives of all orders at
the origin. Because existence of the (k + 1)st derivative implies continuity of the
kth, it suffices to show that each such derivative exists. We begin by noting that
J is continuous at 0 because lim;\ o e~/ = 0. In fact, a standard application of
I’Hopital’s rule and induction shows that for any integer k > 0,

lim ——— = lim — =0. (2.2)

We show by induction that for ¢ > 0, the kth derivative of f is of the form

—1/t
FOO=p) 5 23)

for some polynomial py of degree at most k. This is clearly true (with po(¢) = 1)
for k = 0, so suppose it is true for some k > 0. By the product rule,

e—l/t t_ze_l/t e—l/t
SEV@) = p;c([)sz + Pk(f)tT —kak(t)m

e—l/t
= (P (0) + pe(0) = 2Kk1Pk (D) 5y

which is of the required form.

Finally, we prove by induction that £ ®)(0) = 0 for each integer k > 0. For k = 0
this is true by definition, so assume that it is true for some k > 0. To prove that
FE+D(0) exists, it suffices to show that £ *) has one-sided derivatives from both
sides at + = 0 and that they are equal. Clearly, the derivative from the left is zero.
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Q) h()
|
/ :
t i t
1 T
r r
Fig.24 f(t)=e /! Fig. 2.5 A cutoff function

Using (2.3) and (2.2) again, we find that the derivative of f®) from the right at
t =01is equal to

e—l/t
) pk(t) 12k -0 . e_l/t . e_l/t
}{% —Y = tll\lgpk(l)m = pr(0) }{1}) 2kt 0
Thus f®+D(0) = 0. o

Lemma 2.21. Given any real numbers r1 and ry such that r1 < r, there exists a
smooth function h: R — R such that h(t) =1 fort <ry, 0 <h(t) <1 forr; <
t <rp,and h(t) =0 fort > r,.

Proof. Let f be the function of the previous lemma, and set
Sf(ra—1)
flra=t)+ f(t—r1)

(See Fig. 2.5.) Note that the denominator is positive for all 7, because at least one
of the expressions r, — ¢ and t — ry is always positive. The desired properties of &
follow easily from those of f. O

h(t) =

A function with the properties of 4 in the preceding lemma is usually called a
cutoff function.

Lemma 2.22. Given any positive real numbers r\ < r2, there is a smooth function
H:R" > Rsuchthat H=10n B, (0),0 < H(x) <1 forall x € B,,(0)~ B, (0),
and H =0 on R" ~ B,,(0).

Proof. Just set H(x) = h(|x|), where & is the function of the preceding lemma.
Clearly, H is smooth on R” ~ {0}, because it is a composition of smooth functions
there. Since it is identically equal to 1 on B, (0), it is smooth there too. O

The function H constructed in this lemma is an example of a smooth bump
Junction, a smooth real-valued function that is equal to 1 on a specified set and
is zero outside a specified neighborhood of that set. Later in this chapter, we will
generalize this notion to manifolds.
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If f is any real-valued or vector-valued function on a topological space M, the
support of f, denoted by supp f, is the closure of the set of points where f is
nonzero:

supp f = {p € M : f(p) #0}.

(For example, if H is the function constructed in the preceding lemma, then
supp H = §r2 (0).) If supp f is contained in some set U C M, we say that f is
supported in U. A function f is said to be compactly supported if supp f is a
compact set. Clearly, every function on a compact space is compactly supported.

The next construction is the most important application of paracompactness. Sup-
pose M is a topological space, and let X = (Xy)xec4 be an arbitrary open cover
of M, indexed by a set A. A partition of unity subordinate to X is an indexed fam-
ily (¥4)aea of continuous functions ¥, : M — R with the following properties:

(1) 0<yy(x)<lforallo € Aandall x e M.
(i) supp ¥ € X, foreach o € A4.
(iii) The family of supports (supp ¥ )ee4 is locally finite, meaning that every point
has a neighborhood that intersects supp ¥, for only finitely many values of «.
(V) Y yeq Val(x)=1forallx e M.

Because of the local finiteness condition (iii), the sum in (iv) actually has only
finitely many nonzero terms in a neighborhood of each point, so there is no is-
sue of convergence. If M is a smooth manifold with or without boundary, a smooth
partition of unity is one for which each of the functions 14 is smooth.

Theorem 2.23 (Existence of Partitions of Unity). Suppose M is a smooth mani-
fold with or without boundary, and X = (Xy)aec4 is any indexed open cover of M .
Then there exists a smooth partition of unity subordinate to X; .

Proof. For simplicity, suppose for this proof that M is a smooth manifold without
boundary; the general case is left as an exercise. Each set X, is a smooth manifold in
its own right, and thus has a basis B, of regular coordinate balls by Proposition 1.19,
and it is easy to check that B = |, B, is a basis for the topology of M. It follows
from Theorem 1.15 that X has a countable, locally finite refinement { B; } consisting
of elements of 8. By Lemma 1.13(a), the cover {E,-} is also locally finite.

For each 7, the fact that B; is aregular coordinate ball in some X, guarantees that
there is a coordinate ball Bi’ C X such that Blf D) E,- , and a smooth coordinate map
@i+ B/ — R" such that ¢; (B;) = By, (0) and ¢; (B]) = B,/(0) for some r; <r;. For
each i, define a function f;: M — R by

Hiog; onB],
Ji= -
0 on M ~ B;,

where H;: R” — R is a smooth function that is positive in By, (0) and zero else-
where, as in Lemma 2.22. On the set Bi’ ~ B; where the two definitions overlap,
both deﬁnit_ions yield the zero function, so f; is well defined and smooth, and

supp fi = Bj.
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Define f: M — R by f(x) =) ; fi(x). Because of the local finiteness of
the cover {B;}, this sum has only finitely many nonzero terms in a neighborhood
of each point and thus defines a smooth function. Because each f; is nonnega-
tive everywhere and positive on B;, and every point of M is in some Bj;, it fol-
lows that f(x) > 0 everywhere on M. Thus, the functions g;: M — R defined
by gi(x) = fi(x)/f(x) are also smooth. It is immediate from the definition that
0<gi<land) ;g =1

Finally, we need to reindex our functions so that they are indexed by the same
set A as our open cover. Because the cover {B]} is a refinement of X, for each i
we can choose some index a(i) € A such that B] C X,(;. For each a € A, define

Yo: M — R by
Va= ) g
ita(i)=«
If there are no indices i for which a(i) = «, then this sum should be interpreted as
the zero function. It follows from Lemma 1.13(b) that

supp¥a = |J Bi= |J Bi <X

ia(i)=«a ita(i)=«

Each v, is a smooth function that satisfies 0 < ¥, < 1. Moreover, the family of
supports (Supp Vo )ae4 is still locally finite, and > ", o = D, gi = 1, so this is the
desired partition of unity. O

» Exercise 2.24. Show how the preceding proof needs to be modified for the case in
which M has nonempty boundary.

There are basically two different strategies for patching together locally defined
smooth maps to obtain a global one. If you can define a map in a neighborhood of
each point in such a way that the locally defined maps all agree where they overlap,
then the local definitions piece together to yield a global smooth map by Corol-
lary 2.8. (This usually requires some sort of uniqueness result.) But if the local
definitions are not guaranteed to agree, then you usually have to resort to a partition
of unity. The trick then is showing that the patched-together objects still have the
required properties. We use both strategies repeatedly throughout the book.

Applications of Partitions of Unity

As our first application of partitions of unity, we extend the notion of bump functions
to arbitrary closed subsets of manifolds. If M is a topological space, A C M is a
closed subset, and U € M is an open subset containing A, a continuous function
Y: M — R is called a bump function for A supportedin U if 0 <y <1 on M,
Y =1onA,and suppy CU.

Proposition 2.25 (Existence of Smooth Bump Functions). Letr M be a smooth
manifold with or without boundary. For any closed subset A C M and any open
subset U containing A, there exists a smooth bump function for A supported in U.
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Proof. Let Up = U and Uy = M ~ A, and let {1y, ¥1} be a smooth partition of
unity subordinate to the open cover {Uy, U; }. Because ¥/; = 0 on A and thus y¢ =
>; ¥i = 1 there, the function ¢ has the required properties. O

Our second application is an important result concerning the possibility of ex-
tending smooth functions from closed subsets. Suppose M and N are smooth man-
ifolds with or without boundary, and A € M is an arbitrary subset. We say that a
map F: A— N is smooth on A if it has a smooth extension in a neighborhood of
each point: that is, if for every p € A there is an open subset W € M containing p
and a smooth map F: W — N whose restriction to W N A agrees with F.

Lemma 2.26 (Extension Lemma for Smooth Functions). Suppose M is a smooth
manifold with or without boundary, A C M is a closed subset, and f: A — R¥ isa

smooth function. For any open subset U containing A, there exists a smooth function
f1 M — RF such that f|a = f and supp f CU.

Proof. For each p € A, choose a neighborhood W), of p and a smooth function
f;,: W, — R¥ that agrees with f on W, N A. Replacing W, by W, N U, we may
assume that W, € U. The family of sets {W, : p € A} U {M ~ A} is an open cover
of M. Let {y, : p € A} U {¥o} be a smooth partition of unity subordinate to this
cover, with supp ¥, € W, and suppyo € M ~ A.

For each p € A, the product v, f;, is smooth on W), and has a smooth extension
to all of M if we interpret it to be zero on M ~ supp V/,. (The extended function is
smooth because the two definitions agree on the open subset W), ~ supp v, where
they overlap.) Thus we can define f : M — R by

F@) =Y 9p(x) fp(x).

peA

Because the collection of supports {supp ¥, } is locally finite, this sum actually has
only a finite number of nonzero terms in a neighborhood of any point of M, and
therefore defines a smooth function. If x € A, then (x) = 0 and f;,(x) = f(x)
for each p such that ¥, (x) # 0, so

F@) =Y 9,00 () = (w(,(x) 30, (x)) £ = £00),

peA peA

SO f is indeed an extension of f. It follows from Lemma 1.13(b) that

supp f = |_J suppy, = | suppy, S U.

peA peA O
» Exercise 2.27. Give a counterexample to show that the conclusion of the extension

lemma can be false if A is not closed.

The assumption in the extension lemma that the codomain of f is ]Rk, and not
some other smooth manifold, is needed: for other codomains, extensions can fail to
exist for topological reasons. (For example, the identity map S' — S! is smooth,
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but does not have even a continuous extension to a map from R? to S'.) Later we
will show that a smooth map from a closed subset of a smooth manifold into a
smooth manifold has a smooth extension if and only if it has a continuous one (see
Corollary 6.27).

This extension lemma, by the way, illustrates an essential difference between
smooth manifolds and real-analytic manifolds. The analogue of the extension
lemma for real-analytic functions on real-analytic manifolds is decidedly false, be-
cause a real-analytic function that is defined on a connected domain and vanishes
on an open subset must be identically zero.

Next, we use partitions of unity to construct a special kind of smooth function. If
M is a topological space, an exhaustion function for M is a continuous function
/' M — R with the property that the set /! ((—oc, ¢]) (called a sublevel set of f)
is compact for each ¢ € R. The name comes from the fact that as n ranges over
the positive integers, the sublevel sets f ! ((—oo, n]) form an exhaustion of M by
compact sets; thus an exhaustion function provides a sort of continuous version of an
exhaustion by compact sets. For example, the functions f: R” — R and g: B” —
R given by
F@ =R =

— x|

are smooth exhaustion functions. Of course, if M is compact, any continuous real-
valued function on M is an exhaustion function, so such functions are interesting
only for noncompact manifolds.

Proposition 2.28 (Existence of Smooth Exhaustion Functions). Every smooth
manifold with or without boundary admits a smooth positive exhaustion function.

Proof. Let M be a smooth manifold with or without boundary, let {V;}72, be any
countable open cover of M by precompact open subsets, and let {y; } be a smooth
partition of unity subordinate to this cover. Define f € C*° (M) by

o0
f)=>_jvip).
j=1
Then f is smooth because only finitely many terms are nonzero in a neighborhood
of any point, and positive because f(p) > Zj Yi(p)=1.
To see that f is an exhaustion function, let ¢ € R be arbitrary, and choose a
positive integer N > ¢. If p ¢ UJN=1 17]-, then y;(p) =0for 1 < j <N, so

fy= Y jvip= Y Ny(p=NY yi(p)=N>c
j=N+1 j=N+1 j=1

Equivalently, if f(p) <c,then p € U,N=1 V;. Thus f~1((—o0.c]) is aclosed subset

of the compact set U}I_VZI I7j and is therefore compact. O

As our final application of partitions of unity, we will prove the remarkable fact
that every closed subset of a manifold can be expressed as a level set of some smooth
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real-valued function. We will not use this result in this book (except in a few of the
problems), but it provides an interesting contrast with the result of Example 1.32.

Theorem 2.29 (Level Sets of Smooth Functions). Let M be a smooth manifold.
If K is any closed subset of M, there is a smooth nonnegative function f: M — R
such that f=1(0) =K.

Proof. We begin with the special case in which M = R” and K € R” is a closed
subset. For each x € M ~ K, there is a positive number r < 1 such that B,(x) C
M ~ K. By Proposition A.16, M ~ K is the union of countably many such balls
{Br,- (xi)}?il- _

Let 2: R" — R be a smooth bump function that is equal to 1 on By,,(0) and
supported in B;(0). For each positive integer i, let C; > 1 be a constant that bounds
the absolute values of & and all of its partial derivatives up through order i. Define
f:R" - R by

) (X%
10=2.5¢ ( i )
The terms of the series are bounded in absolute value by those of the convergent
series ) ; 1/ 2!, so the entire series converges uniformly to a continuous function by
the Weierstrass M -test. Because the ith term is positive exactly when x € By, (x;),
it follows that f is zero in K and positive elsewhere.

It remains only to show that f is smooth. We have already shown that it is con-
tinuous, so suppose k > 1 and assume by induction that all partial derivatives of f
of order less than k exist and are continuous. By the chain rule and induction, every
kth partial derivative of the ith term in the series can be written in the form

(ri)i_kD (X%
2iCi k ri ’

where Dy h is some kth partial derivative of 4. By our choices of r; and C;, as soon
asi > k, each of these terms is bounded in absolute value by 1/ 2! so the differenti-
ated series also converges uniformly to a continuous function. It then follows from
Theorem C.31 that the kth partial derivatives of f exist and are continuous. This
completes the induction, and shows that f is smooth.

Now let M be an arbitrary smooth manifold, and K € M be any closed subset.
Let {By} be an open cover of M by smooth coordinate balls, and let {1y} be a
subordinate partition of unity. Since each B, is diffeomorphic to R”, the preceding
argument shows that for each « there is a smooth nonnegative function fo: By — R
such that f;1(0) = By N K. The function f =", ¥ fo does the trick. O



48

2 Smooth Maps

Problems

2-1.

2-2.
2-3.

2-4.

2-5.

2-6.

2-7.

2-8.

2-9.

Define f: R — R by
1, x>0,

0, x<0O.

fx) =

Show that for every x € R, there are smooth coordinate charts (U, ¢) con-
taining x and (V, ) containing f(x) such that ¥ o f o ¢! is smooth as a
map from (p(U N f_l(V)) to ¥ (V), but f is not smooth in the sense we
have defined in this chapter.

Prove Proposition 2.12 (smoothness of maps into product manifolds).

For each of the following maps between spheres, compute sufficiently many

coordinate representations to prove that it is smooth.

(@) pn: S' — Sl is the nth power map for n € Z, given in complex nota-
tion by p,(z) = z".

(b) a: S™ — S" is the antipodal map «(x) = —x.

(c) F:S3— S?isgivenby F(w,z) = (zw + wZ,iwz —izW,zZ — ww),
where we think of S3 as the subset {(w,z) w4 z)? = 1} of C2.

Show that the inclusion map B” < R” is smooth when B” is regarded as a
smooth manifold with boundary.

Let R be the real line with its standard smooth structure, and let R denote

the same topological manifold with the smooth structure defined in Exam-

ple 1.23. Let f: R — R be a function that is smooth in the usual sense.

(a) Show that f is also smooth as a map from R to R.

(b) Show that f is smooth as a map from R to R if and only if f™(0)=0
whenever 7 is not an integral multiple of 3.

Let P: R"t! < {0} — R*¥*! < {0} be a smooth function, and suppose that
for some d € Z, P(Ax) = A4 P(x) forall A € R ~ {0} and x € R"+1 < {0}.
(Such a function is said to be homogeneous of degree d .) Show that the map
P: RP" — RP* defined by P([x]) = [P(x)] is well defined and smooth.

Let M be a nonempty smooth n-manifold with or without boundary, and
suppose n > 1. Show that the vector space C*°(M) is infinite-dimensional.
[Hint: show that if f1,..., fx are elements of C°° (M) with nonempty dis-
joint supports, then they are linearly independent.]

Define F: R" — RP” by F(xl,...,x") = [xl,...,x",l]. Show that F
is a diffeomorphism onto a dense open subset of RP”. Do the same for
G: C" — CP" defined by G(z',...,z") = [z!,....2",1] (see Problem
1-9).

Given a polynomial p in one variable with complex coefficients, not iden-
tically zero, show that there is a unique smooth map p: CP! — CP! that
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2-10.

2-12.
2-13.

2-14.

makes the following diagram commute, where CP! is 1-dimensional com-
plex projective space and G: C — CP! is the map of Problem 2-8:

<C—G>(CIP"

pl l[v”

C — CPL
G

(Used on p. 465.)

For any topological space M, let C(M) denote the algebra of continu-
ous functions f: M — R. Given a continuous map F: M — N, define
F*:C(N)=>C(M)by F*(f)=foF.

(a) Show that F* is a linear map.

(b) Suppose M and N are smooth manifolds. Show that F: M — N is
smooth if and only if F*(C*°(N)) C C*°(M).

(c) Suppose F: M — N is a homeomorphism between smooth manifolds.
Show that it is a diffeomorphism if and only if F* restricts to an iso-
morphism from C*°(N) to C*°(M).

[Remark: this result shows that in a certain sense, the entire smooth struc-

ture of M is encoded in the subset C*°(M) C C(M). In fact, some authors

define a smooth structure on a topological manifold M to be a subalgebra of

C (M) with certain properties; see, e.g., [Nes03].] (Used on p. 75.)

Suppose V' is a real vector space of dimension n > 1. Define the projec-
tivization of 'V , denoted by P (1), to be the set of 1-dimensional linear sub-
spaces of V', with the quotient topology induced by the map w: V' ~ {0} —
P(V) that sends x to its span. (Thus P (R”) = RP"~!,) Show that P(V)
is a topological (n — 1)-manifold, and has a unique smooth structure with
the property that for each basis (Ej. ..., E,) for V, the map E: RP"! —
P(V) defined by E[v',...,v"]|= [v'E;] (where brackets denote equiva-
lence classes) is a diffeomorphism. (Used on p. 561.)

State and prove an analogue of Problem 2-11 for complex vector spaces.
Suppose M is a topological space with the property that for every indexed

open cover X of M, there exists a partition of unity subordinate to X'. Show
that M is paracompact.

Suppose A and B are disjoint closed subsets of a smooth manifold M.
Show that there exists f € C°°(M) such that 0 < f(x) <1 forall x € M,
f710)=A4,and f~1(1) = B.



Chapter 3
Tangent Vectors

The central idea of calculus is linear approximation. This arises repeatedly in the
study of calculus in Euclidean spaces, where, for example, a function of one variable
can be approximated by its tangent line, a parametrized curve in R” by its velocity
vector, a surface in R3 by its tangent plane, or a map from R” to R™ by its total
derivative (see Appendix C).

In order to make sense of calculus on manifolds, we need to introduce the tangent
space to a manifold at a point, which we can think of as a sort of “linear model”
for the manifold near the point. Because of the abstractness of the definition of a
smooth manifold, this takes some work, which we carry out in this chapter.

We begin by studying much more concrete objects: geometric tangent vectors
in R”, which can be visualized as “arrows” attached to points. Because the defi-
nition of smooth manifolds is built around the idea of identifying which functions
are smooth, the property of a geometric tangent vector that is amenable to gener-
alization is its action on smooth functions as a “directional derivative.” The key
observation, which we prove in the first section of this chapter, is that the process
of taking directional derivatives gives a natural one-to-one correspondence between
geometric tangent vectors and linear maps from C*° (R") to R satisfying the prod-
uct rule. (Such maps are called derivations.) With this as motivation, we then define
a tangent vector on a smooth manifold as a derivation of C*° (M) at a point.

In the second section of the chapter, we show how a smooth map between mani-
folds yields a linear map between tangent spaces, called the differential of the map,
which generalizes the total derivative of a map between Euclidean spaces. This al-
lows us to connect the abstract definition of tangent vectors to our concrete geo-
metric picture by showing that any smooth coordinate chart (U, ¢) gives a natural
isomorphism from the space of tangent vectors to M at p to the space of tangent
vectors to R” at ¢(p), which in turn is isomorphic to the space of geometric tangent
vectors at ¢(p). Thus, any smooth coordinate chart yields a basis for each tangent
space. Using this isomorphism, we describe how to do concrete computations in
such a basis. Based on these coordinate computations, we show how the union of
all the tangent spaces at all points of a smooth manifold can be “glued together” to
form a new manifold, called the tangent bundle of the original manifold.

J.M. Lee, Introduction to Smooth Manifolds, Graduate Texts in Mathematics 218, 50
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Next we show how a smooth curve determines a tangent vector at each point,
called its velocity, which can be regarded as the derivation of C °°(M) that takes the
derivative of each function along the curve.

In the final two sections we discuss and compare several other approaches to
defining tangent spaces, and give a brief overview of the terminology of caregory
theory, which puts the tangent space and differentials in a larger context.

Tangent Vectors

Imagine a manifold in Euclidean space—for example, the unit sphere S*~! C R”,
What do we mean by a “tangent vector” at a point of S”~!? Before we can answer
this question, we have to come to terms with a dichotomy in the way we think about
elements of R”. On the one hand, we usually think of them as points in space, whose
only property is location, expressed by the coordinates (xl, ... ,x"). On the other
hand, when doing calculus we sometimes think of them instead as vectors, which are
objects that have magnitude and direction, but whose location is irrelevant. A vector
v = vie; (where e; denotes the ith standard basis vector) can be visualized as an
arrow with its initial point anywhere in R”; what is relevant from the vector point
of view is only which direction it points and how long it is.

What we really have in mind here is a separate copy of R” at each point. When
we talk about vectors tangent to the sphere at a point a, for example, we imagine
them as living in a copy of R” with its origin translated to a.

Geometric Tangent Vectors

Here is a preliminary definition of tangent vectors in Euclidean space. Given a point
a € R", let us define the geometric tangent space to R" at a, denoted by R”, to
be the set {a} x R" = {(a,v) : v € R"}. A geometric tangent vector in R" is an
element of R? for some a € R”. As a matter of notation, we abbreviate (a, v) as v,
(or sometimes v|, if it is clearer, for example if v itself has a subscript). We think
of v, as the vector v with its initial point at a (Fig. 3.1).The set R is a real vector

space under the natural operations
Vg + W = (v + w)g, ¢(va) = (cv)q.

The vectors e;|,, i =1,...,n, are a basis for R”. In fact, as a vector space, R is
essentially the same as R” itself; the only reason we add the index a is so that the
geometric tangent spaces Ry and R} at distinct points a and b will be disjoint sets.

With this definition we could think of the tangent space to S”~! at a point
a € S"1 as a certain subspace of R” (Fig. 3.2), namely the space of vectors that
are orthogonal to the radial unit vector through a, using the inner product that R’
inherits from R” via the natural isomorphism R” 2 R”. The problem with this defi-
nition, however, is that it gives us no clue as to how we might define tangent vectors
on an arbitrary smooth manifold, where there is no ambient Euclidean space. So we
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Fig. 3.1 Geometric tangent space Fig. 3.2 Tangent space to S” !

need to look for another characterization of tangent vectors that might make sense
on a manifold.

The only things we have to work with on smooth manifolds so far are smooth
functions, smooth maps, and smooth coordinate charts. One thing that a geometric
tangent vector provides is a means of taking directional derivatives of functions. For
example, any geometric tangent vector v, € R} yields amap D,|,: C*° (R") = R,
which takes the directional derivative in the direction v at a:

Dulf =Duf@= | flatm), G
=0

t

This operation is linear over R and satisfies the product rule:

Dyl,(fg) = f(a)Dyl, g + g(a)Dyl, f. (3.2

If v, = v'e;|, in terms of the standard basis, then by the chain rule D,|, f can be
written more concretely as

Af

Dylo f ="' (@).
“ dxi
(Here we are using the summation convention as usual, so the expression on the
right-hand side is understood to be summed overi = 1,...,n. This sum is consistent

with our index convention if we stipulate that an upper index “in the denominator”
is to be regarded as a lower index.) For example, if v, = ¢j],, then

b
Dulaf = s ta).

With this construction in mind, we make the following definition. If @ is a point
of R”, amap w: C* (R") — R is called a derivation at a if it is linear over R and
satisfies the following product rule:

w(fg) = fl@)wg + gla)wf. 3.3)

Let T,R" denote the set of all derivations of C*° (R") at a. Clearly, T,R"” is a
vector space under the operations

(wy +wa)f =wi f +w2f, (cw) f =c(wf).
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The most important (and perhaps somewhat surprising) fact about 7,R" is that
it is finite-dimensional, and in fact is naturally isomorphic to the geometric tangent
space R/ that we defined above. The proof will be based on the following lemma.

Lemma 3.1 (Properties of Derivations). Suppose a e R, w € T,R", and f,g €
C>® (R™).

(a) If f is a constant function, then wf = 0.

(b) If f(a) = g(a) =0, then w(fg) =0.

Proof. Tt suffices to prove (a) for the constant function f;(x) = 1, forthen f(x) =c¢
implies wf = w(cf;) = cwf; = 0 by linearity. For fi, the product rule gives

wfi =w(f1/1) = H@wfi + fil@wfr =2wfi,

which implies that w f; = 0. Similarly, (b) also follows from the product rule:

w(fg)= flawg+gl@wf =0+0=0. O

The next proposition shows that derivations at @ are in one-to-one correspon-
dence with geometric tangent vectors.

Proposition 3.2. Lera € R”.

(a) For each geometric tangent vector vg € R, the map Dy|,: C*° (R") - R
defined by (3.1) is a derivation at a.
(b) The map vy — Dy, is an isomorphism from R}, onto T,R".

Proof. The fact that D,|, is a derivation at a is an immediate consequence of the
product rule (3.2).

To prove that the map v, — D/, is an isomorphism, we note first that it is linear,
as is easily checked. To see that it is injective, suppose v, € R7 has the property that
Dy|, is the zero derivation. Writing v, = vie;| o 1n terms of the standard basis, and
taking f to be the jth coordinate function x/: R” — R, thought of as a smooth
function on R”, we obtain

. I .
0=Duly (/) =o' 55 ()| =,

where the last equality follows because dx/ /dx’ = 0 except when i = j, in which
case it is equal to 1. Since this is true for each j, it follows that v, is the zero vector.
To prove surjectivity, let w € T,R" be arbitrary Motivated by the computation
in the precedlng paragraph, we define v = v'e;, where the real numbers vl 0"
are given by v' = w( ) We will show that w = Dy|,.
To see this, let f be any smooth real-valued function on R”. By Taylor’s theorem

(Theorem C.15), we can write

f(x) = f(a) +Z—<a> (x' —a’)

i=1

n . . . ol 92
+ Z (xt_at)(xf—al)/o (l—t)axiaj;j (a+t(x—a))dt
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Note that each term in the last sum above is a product of two smooth functions of x

that vanish at x = a: one is (xi — ai), and the other is (xj —a’ ) times the integral.
The derivation w annihilates this entire sum by Lemma 3.1(b). Thus

wf = w(f@) +Z (@6 o))

—0+ Y 20y 0 ()~ w (a)

i=1

= Z (@) = Dyl f. o
Corollary 3.3. For any a € R", the n derivations
% . %a defined by oy afzaa){i(a)
form a basis for T,R", which therefore has dimension n.
Proof. Apply the previous proposition and note that 3/dx’ |, = D, |, O

Tangent Vectors on Manifolds

Now we are in a position to define tangent vectors on manifolds and manifolds with
boundary. The definition is the same in both cases. Let M be a smooth manifold with
or without boundary, and let p be a point of M. A linear map v: C*°(M) — R is
called a derivation at p if it satisfies

v(fg) = f(p)vg +g(p)vf forall f,.ge C®(M). (3.4)

The set of all derivations of C°°(M) at p, denoted by T, M, is a vector space called
the tangent space to M at p. An element of T, M is called a tangent vector at p.
The following lemma is the analogue of Lemma 3.1 for manifolds.

Lemma 3.4 (Properties of Tangent Vectors on Manifolds). Suppose M is a
smooth manifold with or without boundary, p € M, v € T,M, and f,g € C*(M).

(a) If f is a constant function, then vf = 0.
(b) If f(p) = g(p) =0, then v(fg) =

» Exercise 3.5. Prove Lemma 3.4.

With the motivation of geometric tangent vectors in R” in mind, you should
visualize tangent vectors to M as “arrows” that are tangent to M and whose base
points are attached to M at the given point. Proofs of theorems about tangent vectors
must, of course, be based on the abstract definition in terms of derivations, but your
intuition should be guided as much as possible by the geometric picture.
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DM/F\ /f\
R

Fig. 3.3 The differential

The Differential of a Smooth Map

To relate the abstract tangent spaces we have defined on manifolds to geometric tan-
gent spaces in R”, we have to explore the way smooth maps affect tangent vectors.
In the case of a smooth map between Euclidean spaces, the total derivative of the
map at a point (represented by its Jacobian matrix) is a linear map that represents
the “best linear approximation” to the map near the given point. In the manifold
case there is a similar linear map, but it makes no sense to talk about a linear map
between manifolds. Instead, it will be a linear map between tangent spaces.

If M and N are smooth manifolds with or without boundary and F': M — N is
a smooth map, for each p € M we define a map

deI TpM —> TF(p)N,

called the differential of F at p (Fig. 3.3), as follows. Given v € T, M, we let
d F,(v) be the derivation at F'(p) that acts on f € C°°(N) by the rule

dF,(0)(f) =v(f o F).

Note that if f € C®°(N), then f o F € C*®(M), so v(f o F) makes sense. The
operator dFp,(v): C*°(N) — R is linear because v is, and is a derivation at F(p)
because for any f, g € C°°(N) we have

dF,(v)(fg) = v((fg)o F)=v((f o F)(go F))
= foF(pv(goF)+goF(pu(foF)
= f(F(p))dF,(v)(g) + g(F(p))dF,(v)(f).

Proposition 3.6 (Properties of Differentials). Let M, N, and P be smooth man-
ifolds with or without boundary, let F: M — N and G: N — P be smooth maps,
andlet pe M.

(@) dFy: ToM — Tpp)N is linear.

(b) d(GoF)p,=dGpppyodFy: TyM — Tgor(p) P-

(©) ddy), = IdTpMZ oM —T,M.

(d) If F is a diffeomorphism, then dF,: T,M — Tpp)N is an isomorphism, and
(dF,)'= d(F_l)F(p).
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» Exercise 3.7. Prove Proposition 3.6.

Our first important application of the differential will be to use coordinate charts
to relate the tangent space to a point on a manifold with the Euclidean tangent space.
But there is an important technical issue that we must address first: while the tangent
space is defined in terms of smooth functions on the whole manifold, coordinate
charts are in general defined only on open subsets. The key point, expressed in the
next proposition, is that tangent vectors act locally.

Proposition 3.8. Let M be a smooth manifold with or without boundary, p € M,
andv € T,M . If f,g € C*°(M) agree on some neighborhood of p, then vf = vg.

Proof. Leth = f —g, sothat h is a smooth function that vanishes in a neighborhood
of p. Let ¥ € C*®°(M) be a smooth bump function that is identically equal to 1 on
the support of & and is supported in M ~{p}. Because ¥ = 1 where 4 is nonzero, the
product ¥4 is identically equal to &. Since h(p) = ¥ (p) = 0, Lemma 3.4 implies
that vh = v(¥h) = 0. By linearity, this implies vf = vg. O

Using this proposition, we can identify the tangent space to an open submanifold
with the tangent space to the whole manifold.

Proposition 3.9 (The Tangent Space to an Open Submanifold). Let M be a
smooth manifold with or without boundary, let U C M be an open subset, and
let v: U — M be the inclusion map. For every p € U, the differential di,: T,U —
T, M is an isomorphism.

Proof. To prove injectivity, suppose v € TpU and di,y(v) =0 € TpM. Let B be
a neighborhood of p such that BC U.If f € C®(U) is arbitrary, the extension
lemma for smooth functions guarantees that there exists f € C*®(M) such that
f f on B. Then since f and f |y are smooth functions on U that agree in a
neighborhood of p, Proposition 3.8 implies

vf =vo(flv) =v(for) =di(v), f =

Since this holds for every f € C*°(U), it follows that v = 0, so d,, is injective.
On the other hand, to prove surjectivity, suppose w € T, M is arbitrary. Define

an operator v: C*(U) — R by setting vf = w f where f is any smooth function

on all of M that agrees with f on B. By Proposition 3.8, vf is independent of the

choice of f, so v is well defined, and it is easy to check that it is a derivation of
C*®(U) at p.Forany g € C*(M),

dip(v)g =v(go) =w(goL) =wg,

where the last two equalities follow from the facts that g o, got, and g all agree
on B. Therefore, d p is also surjective. O

Given an open subset U € M, the isomorphism d¢, between T,U and T, M is
canonically defined, independently of any choices. From now on we identify T,U
with T, M for any point p € U. This identification just amounts to the observation
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Fig. 3.4 The tangent space to a manifold with boundary

that d i, (v) is the same derivation as v, thought of as acting on functions on the
bigger manifold M instead of functions on U. Since the action of a derivation on
a function depends only on the values of the function in an arbitrarily small neigh-
borhood, this is a harmless identification. In particular, this means that any tangent
vector v € T, M can be unambiguously applied to functions defined only in a neigh-
borhood of p, not necessarily on all of M.

Proposition 3.10 (Dimension of the Tangent Space). If M is an n-dimensional
smooth manifold, then for each p € M, the tangent space T, M is an n-dimensional
vector space.

Proof. Given p € M, let (U, ¢) be a smooth coordinate chart containing p. Be-
cause ¢ is a diffeomorphism from U onto an open subset U C R”, it follows
from Proposition 3.6(d) that d¢,, is an isomorphism from 7,U to T,p(p)lA] . Since
Proposition 3.9 guarantees that T,M = T,,U and Ty p)l? = T,pR", it follows
that dim 7, M = dim T,(,)R" = n. O

Next we need to prove an analogous result for manifolds with boundary. In fact,
if M is an n-manifold with boundary, it might not be immediately clear what one
should expect the tangent space at a boundary point of M to look like. Should it be
an n-dimensional vector space, like the tangent space at an interior point? Or should
it be (n — 1)-dimensional, like the boundary? Or should it be an n-dimensional half-
space, like the space H” on which M is modeled locally?

As we will show below, our definition implies that the tangent space at a bound-
ary point is an n-dimensional vector space (Fig. 3.4), just like the tangent spaces
at interior points. This may or may not seem like the most geometrically intuitive
choice, but it has the advantage of making most of the definitions of geometric ob-
jects on a manifold with boundary look exactly the same as those on a manifold.

First, we need to relate the tangent spaces T,H" and T,R" for points a € dH".
Since H" is not an open subset of R”, Proposition 3.9 does not apply. As a substi-
tute, we have the following lemma.

Lemma 3.11. Let ¢: H" < R” denote the inclusion map. For any a € oH", the
differential di,: T,H" — T,R" is an isomorphism.

Proof. Suppose a € dH". To show that dt, is injective, assume d(,(v) = 0. Sup-
pose f: H" — R is smooth, and let f be any extension of f to a smooth function
defined on all of R”. (Such an extension exists by the extension lemma for smooth
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functions, Lemma 2.26.) Then fo t=f,so

vf =v(fot) =di(v)f =0,

which implies that d, is injective.
To show surjectivity, let w € T,R” be arbitrary. Define v € T,H" by

vf =wf,

where ]7 is any smooth extension of f. Writing w = w'd/9x’|, in terms of the
standard basis for 7,,R”, this means that

f
vf =w' == (a).
f=v' 5@
This is independent of the choice of f , because by continuity the derivatives of f
at a are determined by those of f in H”. It is easy to check that v is a derivation at
a and that w = d4(v), so d 1, is surjective. O

Just as we use Proposition 3.9 to identify T,U with 7, M when U is an open
subset of M, we use this lemma to identify T,H" with T,R” when a € dH", and
we do not distinguish notationally between an element of 7,H" and its image in
T,R".

Proposition 3.12 (Dimension of Tangent Spaces on a Manifold with Boundary).
Suppose M is an n-dimensional smooth manifold with boundary. For each p € M,
T, M is an n-dimensional vector space.

Proof. Let p € M be arbitrary. If p is an interior point, then because Int M is
an open submanifold of M, Proposition 3.9 implies that 7, (Int M) = T, M . Since
Int M is a smooth n-manifold without boundary, its tangent spaces all have dimen-
sion n.

On the other hand, if p € dM, let (U,¢) be a smooth boundary chart con-
taining p, and let U= o(U) € H". There are isomorphisms T,M = T,U (by
Proposition 3.9); T,U == Ty p)ﬁ (by Proposition 3.6(d), because ¢ is a diffeomor-
phism); Tq,(p)ﬁ = Ty(p»H" (by Proposition 3.9 again); and T, H" = T,,)R"
(by Lemma 3.11). The result follows. O

Recall from Example 1.24 that every finite-dimensional vector space has a nat-
ural smooth manifold structure that is independent of any choice of basis or norm.
The following proposition shows that the tangent space to a vector space can be
naturally identified with the vector space itself.

Suppose V is a finite-dimensional vector space and a € V. Just as we did earlier
in the case of R”, for any vector v € V, we define a map D,|,: C*°(V) — R by

d
Dyl f = N f(a+tv). (3.5)
=0

t
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Proposition 3.13 (The Tangent Space to a Vector Space). Suppose V is a finite-
dimensional vector space with its standard smooth manifold structure. For each
pointa €V, the map v — D, |, defined by (3.5) is a canonical isomorphism from V
to T,V , such that for any linear map L: V — W, the following diagram commutes:

V=T,V
Ll ldLa (3.6)
W —s TLaW.

Proof. Once we choose a basis for V', we can use the same argument as in the proof
of Proposition 3.2 to show that D, |, is indeed a derivation at a, and that the map
v > Dy |, is an isomorphism.

Now suppose L: V — W is a linear map. Because its components with respect
to any choices of bases for V' and W are linear functions of the coordinates, L is
smooth. Unwinding the definitions and using the linearity of L, we compute

dLa(Dvla)szv|a(foL)

d d
o t=0f( (a +tv)) r t=0f( a+tLv)
:DLU|Laf: U

It is important to understand that each isomorphism V = 7,V is canonically de-
fined, independently of any choice of basis (notwithstanding the fact that we used
a choice of basis to prove that it is an isomorphism). Because of this result, we can
routinely identify tangent vectors to a finite-dimensional vector space with elements
of the space itself. More generally, if M is an open submanifold of a vector space V,
we can combine our identifications T, M <> T,V <> V to obtain a canonical iden-
tification of each tangent space to M with V. For example, since GL(n,R) is an
open submanifold of the vector space M(n, R), we can identify its tangent space at
each point X € GL(n, R) with the full space of matrices M(n, R).

There is another natural identification for tangent spaces to a product manifold.

Proposition 3.14 (The Tangent Space to a Product Manifold). Let M, ..., My
be smooth manifolds, and for each j, let wj: My X ---x My — M; be the projection
onto the M; factor. For any point p = (p1,..., pr) € My X --- x My, the map

o Ty(My x - X Mg) =Ty My ®--- & Ty, My
defined by
a(v) = (d(1)p V), ... d(7K)p(v)) (3.7

is an isomorphism. The same is true if one of the spaces M; is a smooth manifold
with boundary.

Proof. See Problem 3-2. O
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Tw(p)Rn

o(p) R”

Fig. 3.5 Tangent vectors in coordinates

Once again, because the isomorphism (3.7) is canonically defined, independently
of any choice of coordinates, we can consider it as a canonical identification, and we
will always do so. Thus, for example, we identify T(, 4)(M x N) with T, M & T, N,
and treat 7, M and T; N as subspaces of T(, ,)(M x N).

Computations in Coordinates

Our treatment of the tangent space to a manifold so far might seem hopelessly ab-
stract. To bring it down to earth, we will show how to do computations with tangent
vectors and differentials in local coordinates.

First, suppose M is a smooth manifold (without boundary), and let (U, ¢) be
a smooth coordinate chart on M. Then ¢ is, in particular, a diffeomorphism from
U to an open subset U CR". Combining Propositions 3.9 and 3.6(d), we see that
dep: TyM — Ty(,»)R" is an isomorphism.

By Corollary 3.3, the derivations 9/9x'|,(p), - -, 8/9x"|4(p) form a basis for
Toy(p)R". Therefore, the preimages of these vectors under the isomorphism dg,
form a basis for T, M (Fig. 3.5). In keeping with our standard practice of treating
coordinate maps as identifications whenever possible, we use the notation 3/dx |,
for these vectors, characterized by either of the following expressions:

0
=d(p7") (— ) (3.8)
w(p)) v\ 9x ?(p)

Unwinding the definitions, we see that 9/dx’ |, acts on a function f € C*®(U) by

af .
e (P).

0
_ —1
aﬂp—w%)(mi

0
ox?

B d
T 9xt

(fO(p_l):

o(p)

p

where f = f o @~ ! is the coordinate representation of f, and p = (pl, e p") =
@(p) is the coordinate representation of p. In other words, /dx" |, is just the deriva-
tion that takes the i th partial derivative of (the coordinate representation of) f at (the
coordinate representation of) p. The vectors d/dx’ |, are called the coordinate vec-
tors at p associated with the given coordinate system. In the special case of standard
coordinates on R”, the vectors d/dx’ |, are literally the partial derivative operators.
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When M is a smooth manifold with boundary and p is an interior point, the
discussion above applies verbatim. For p € dM, the only change that needs to be
made is to substitute H” for R”, with the understanding that the notation 3/3x" | ()
can be used interchangeably to denote either an element of T, R" or an el-
ement of T,,)H", in keeping with our convention of considering the isomor-
phism diy(p): TyppyH" — TypyR" as an identification. The nth coordinate vector
0/0x" |, should be interpreted as a one-sided derivative in this case.

The following proposition summarizes the discussion so far.

Proposition 3.15. Let M be a smooth n-manifold with or without boundary, and
let p e M. Then TyM is an n-dimensional vector space, and for any smooth chart
(U, (xi)) containing p, the coordinate vectors 3/3x'|p,...,0/0x™|, form a basis
for T,M. O

Thus, a tangent vector v € T, M can be written uniquely as a linear combination

where we use the summation convention as usual, with an upper index in the denom-
inator being considered as a lower index, as explained on p. 52. The ordered basis
(9/9x"|,) is called a coordinate basis for T , M, and the numbers (v',... v") are
called the components of v with respect to the coordinate basis. If v is known, its
components can be computed easily from its action on the coordinate functions. For
each j, the components of v are given by v/ = v (x/) (where we think of x/ as a
smooth real-valued function on U), because

- ;ox7 -
)(x-’)zv o =/,

0

0 (xj) N ( v Oxt
p

The Differential in Coordinates

Next we explore how differentials look in coordinates. We begin by considering
the special case of a smooth map F: U — V, where U C R” and V C R™ are
open subsets of Euclidean spaces. For any p € U, we will determine the ma-
trix of dF,: T,R"” — Tr,)R™ in terms of the standard coordinate bases. Using
(xl, .. ,x”) to denote the coordinates in the domain and (yl,..., ym) to denote
those in the codomain, we use the chain rule to compute the action of dF, on a
typical basis vector as follows:

W5 5 )f_i

9
( 3y’

(foF>=—f( F(p ))

F(p))f
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S

Fig. 3.6 The differential in coordinates

Thus

=5 P 57 (3.9)

oF 7 9
) -(p) —
V4

9
dF (_. .
P\ oxt F(p)

In other words, the matrix of d F), in terms of the coordinate bases is

E( ) oF!
ox! P ox"

(p)

oF™ ) oFm
ox! P oxn

(p)

(Recall that the columns of the matrix are the components of the images of the
basis vectors.) This matrix is none other than the Jacobian matrix of F at p,
which is the matrix representation of the total derivative DF(p): R” — R™. There-
fore, in this case, dF,: T,R" — Tpp)R™ corresponds to the total derivative
DF(p): R" — R™, under our usual identification of Euclidean spaces with their
tangent spaces. The same calculation applies if U is an open subset of H” and V' is
an open subset of H™.

Now consider the more general case of a smooth map F: M — N between
smooth manifolds with or without boundary. Choosing smooth coordinate charts
(U, ¢) for M containing p and (V,¥) for N containing F(p), we obtain the coor-
dinate representation F = YoFogp l:ioUNFY(V)) — ¥(V) (Fig. 3.6). Let
P = ¢(p) denote the coordinate representation of p. By the computation above,
dF 5 is represented with respect to the standard coordinate bases by the Jacobian

)

matrix of F at p. Using the fact that Fogp ! =y~ 1o F,we compute

de( aii p) = dF, (d(w‘l)ﬁ( aii ,;)) =d(V") 55, (dﬁﬁ( %
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F(p))

_ dF7
=d(y I)F(p)( o () 7

(3.10)

Thus, dF), is represented in coordinate bases by the Jacobian matrix of (the coor-
dinate representative of) F'. In fact, the definition of the differential was cooked up
precisely to give a coordinate-independent meaning to the Jacobian matrix.

In the differential geometry literature, the differential is sometimes called the
tangent map, the total derivative, or simply the derivative of F . Because it “pushes”
tangent vectors forward from the domain manifold to the codomain, it is also called
the (pointwise) pushforward. Different authors denote it by symbols such as

F'(p). DF. DF(p), F.. TF, T,F.

We will stick with the notation dF, for the differential of a smooth map between
manifolds, and reserve DF(p) for the total derivative of a map between finite-
dimensional vector spaces, which in the case of Euclidean spaces we identify with
the Jacobian matrix of F.

Change of Coordinates

Suppose (U, ¢) and (V, ) are two smooth charts on M, and p € U N V. Let us
denote the coordinate functions of ¢ by (x*) and those of ¥ by (%'). Any tangent
vector at p can be represented with respect to either basis (3/9x[,) or (3/3%"|,).
How are the two representations related?

In this situation, it is customary to write the transition map ¥ op~': p(UNV) —
¥ (U N V) in the following shorthand notation:

Yo l(x)=(X'(x),....5"(x)).

Here we are indulging in a typical abuse of notation: in the expression X’ (x), we
think of X’ as a coordinate function (whose domain is an open subset of M, identi-
fied with an open subset of R” or H"); but we think of x as representing a point (in
this case, in (U N V)). By (3.9), the differential d (w o (p_l)w(p) can be written

0
-1
d (w S )w(p) (ﬁ o(p

0x7/
= ——(e(p)
)) dx ( ) 3)6] v(p )
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Fig. 3.7 Change of coordinates

(See Fig. 3.7.) Using the definition of coordinate vectors, we obtain
0

=d(p™") (— )
p v\ 9x o(p)
d

- d(l//_l)]/,(p) od (l'/f ° gD_l)w(p) (ﬁ

0
oxt

w(p))

axs 0
= i (ﬁ) = > (3‘1 1)
W(p)) dx X7,

where again we have written p = ¢(p). (This formula is easy to remember, because
it looks exactly the same as the chain rule for partial derivatives in R”.) Applying
this to the components of a vector v = v'3/dx’|, = 3/ 9/0X”|,, we find that the
components of v transform by the rule

_ 0%/ 0

0w

~J
v .
ax?

(PHv'. (3.12)

Example 3.16. The transition map between polar coordinates and standard coordi-
nates in suitable open subsets of the plane is given by (x, y) = (r cos 0, r sin ). Let
p be the point in R? whose polar coordinate representation is (r, 8) = (2, 7/2), and
letv e TPRZ be the tangent vector whose polar coordinate representation is

0
=3—
v or

p
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Applying (3.11) to the coordinate vectors, we find

‘ (n ) 0 ti (7{ ) 0 0
—| =cos — sin( =) —| =+—|,
ax |, 2/ 9y, By »
71 ( 42
— sin — cos —
a0 |,
and thus v has the following coordinate representation in standard coordinates:
0 + 2 9 I
ay ax |,

One important fact to bear in mind is that each coordinate vector 9/dx'|, de-
pends on the entire coordinate system, not just on the single coordinate function x’.
Geometrically, this reflects the fact that d/dx’ |, is the derivation obtained by differ-
entiating with respect to x’ while all the other coordinates are held constant. If the
coordinate functions other than x’ are changed, then the direction of this coordinate
derivative can change. The next exercise illustrates how this can happen.

» Exercise 3.17. Let (x,y) denote the standard coordinates on RZ. Verify that
(X.7) are global smooth coordinates on R?, where

X=x, F=y+x3
Let p be the point (1,0) € R2 (in standard coordinates), and show that

9 9
0x |, ox

5

p

even though the coordinate functions x and X are identically equal.

The Tangent Bundle

Often it is useful to consider the set of all tangent vectors at all points of a mani-
fold. Given a smooth manifold M with or without boundary, we define the tangent
bundle of M, denoted by T M, to be the disjoint union of the tangent spaces at all
points of M:

™ =[] T,M.
PEM

We usually write an element of this disjoint union as an ordered pair (p,v),
with p € M and v € T, M (instead of putting the point p in the second position,
as elements of a disjoint union are more commonly written). The tangent bundle
comes equipped with a natural projection map w: TM — M, which sends each
vector in 7, M to the point p at which it is tangent: 7(p,v) = p. We will often
commit the usual mild sin of identifying 7, M with its image under the canonical
injection v — (p, v), and will use any of the notations (p, v), v,, and v for a tangent
vector in 7, M, depending on how much emphasis we wish to give to the point p.
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™ R2"

Fig. 3.8 Coordinates for the tangent bundle

For example, in the special case M = R”, using Proposition 3.2, we see that the
tangent bundle of R” can be canonically identified with the union of its geometric
tangent spaces, which in turn is just the Cartesian product of R” with itself:

TR =[] T.R" = [[ Rl = [ ] {a} xR" =R" xR".

acR” acR” acR”

An element (a, v) of this Cartesian product can be thought of as representing either
the geometric tangent vector v, or the derivation D, |, defined by (3.1). Be warned,
however, that in general the tangent bundle of a smooth manifold cannot be identi-
fied in any natural way with a Cartesian product, because there is no canonical way
to identify tangent spaces at different points with each other. We will have more to
say about this below.

If M is a smooth manifold, the tangent bundle 7M can be thought of simply as a
disjoint union of vector spaces; but it is much more than that. The next proposition
shows that TM can be considered as a smooth manifold in its own right.

Proposition 3.18. For any smooth n-manifold M, the tangent bundle TM has a
natural topology and smooth structure that make it into a 2n-dimensional smooth
manifold. With respect to this structure, the projection w: TM — M is smooth.

Proof. We begin by defining the maps that will become our smooth charts. Given
any smooth chart (U, ¢) for M, note that 7~!(U) € TM is the set of all tangent

vectors to M at all points of U. Let (xl, . ,x") denote the coordinate functions
of ¢, and define amap ¢: 7~ 1(U) — R?" by
~f ;0
ol v — =(xl(p),...,x”(p),vl,...,v”). (3.13)
ox? »

(See Fig. 3.8.) Its image set is ¢(U) x R”, which is an open subset of R?". It is a
bijection onto its image, because its inverse can be written explicitly as
1 ; 0

~—1 1 n n i
@ (x,...,x,v,...,v)va .
X lo=1(x)
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Now suppose we are given two smooth charts (U, ¢) and (V,v) for M, and let
(71_1 ), ('ﬁ) (n_l ), w) be the corresponding charts on 7M. The sets

gl Na i (V) =e(UNV)xR" and
¥ (' U)NnaT (V) =y (U NV) xR”

are open in R?”, and the transition map 1’/7 0o lipUNV)xR* >y (UNV)x
R” can be written explicitly using (3.12) as

Yo (xl,...,x",vl,...,v”)

(1 n ox! j ax" j
= (x (x),....,x"(x), o7 x)’,..., ™ (x)v )
This is clearly smooth.
Choosing a countable cover {U; } of M by smooth coordinate domains, we obtain
a countable cover of TM by coordinate domains {n_l (U,-)} satisfying conditions
(i)—(iv) of the smooth manifold chart lemma (Lemma 1.35). To check the Haus-
dorff condition (v), just note that any two points in the same fiber of 7 lie in one
chart, while if (p,v) and (¢, w) lie in different fibers, there exist disjoint smooth
coordinate domains U, V for M such that p € U and ¢ € V, and then #~1(U)
and 7~1(V) are disjoint coordinate neighborhoods containing (p,v) and (q,w),
respectively.
To see that w is smooth, note that with respect to charts (U,¢) for M and
(=1 (U), @) for TM, its coordinate representation is 7 (x, v) = x. O

The coordinates (xi v} ) given by (3.13) are called natural coordinates on TM .

» Exercise 3.19. Suppose M is a smooth manifold with boundary. Show that TM
has a natural topology and smooth structure making it into a smooth manifold with
boundary, such that if (U , (x’ )) is any smooth boundary chart for M, then rearranging

the coordinates in the natural chart (n_l ), (xi vl )) for TM yields a boundary chart

(ﬂ_l(U),(vi,xi)).

Proposition 3.20. If M is a smooth n-manifold with or without boundary, and M
can be covered by a single smooth chart, then TM is diffeomorphic to M x R".

Proof. 1f (U, ¢) is a global smooth chart for M, then ¢ is, in particular, a diffeomor-
phism from U = M to an open subset U C R” or H". The proof of the previous
proposition showed that the natural coordinate chart ¢ is a bijection from TM to
U x R", and the smooth structure on TM is defined essentially by declaring @ to
be a diffeomorphism. O

Although the picture of a product U x R” is a useful way to visualize the smooth
structure on a tangent bundle locally as in Fig. 3.8, do not be misled into imagining
that every tangent bundle is globally diffeomorphic (or even homeomorphic) to a
product of the manifold with R”. This is not the case for most smooth manifolds.
We will revisit this question in Chapters 8, 10, and 16.
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By putting together the differentials of F' at all points of M, we obtain a globally
defined map between tangent bundles, called the global differential or global tan-
gent map and denoted by dF: TM — TN. This is just the map whose restriction
to each tangent space T,M C TM is dF,. When we apply the differential of F
to a specific vector v € T, M, we can write either d F,,(v) or dF(v), depending on
how much emphasis we wish to give to the point p. The former notation is more
informative, while the second is more concise.

One important feature of the smooth structure we have defined on 7'M is that it
makes the differential of a smooth map into a smooth map between tangent bundles.

Proposition 3.21. If F: M — N is a smooth map, then its global differential
dF:TM — TN is a smooth map.

Proof. From the local expression (3.9) for dF, in coordinates, it follows that d F
has the following coordinate representation in terms of natural coordinates for 7M

and TN:
oF! . OF" .
PP (x)v', ..., P (x)v’).

dF(xl,...,x”,vl,...,v”)z (Fl(x),...,F”(x),

This is smooth because F is. O

The following properties of the global differential follow immediately from
Proposition 3.6.

Corollary 3.22 (Properties of the Global Differential). Suppose F: M — N
and G: N — P are smooth maps.

(@) d(GoF)=dG odF.

(b) d(Idp) =1drm.

(¢) If F is a diffeomorphism, then dF : TM — TN is also a diffeomorphism, and
(dF)™! zd(F_l). O

Because of part (c) of this corollary, when F is a diffeomorphism we can use the
notation d F~! unambiguously to mean either (dF)~! or d (F™!).

Velocity Vectors of Curves

The velocity of a smooth parametrized curve in R” is familiar from elementary
calculus. It is just the vector whose components are the derivatives of the component
functions of the curve. In this section we extend this notion to curves in manifolds.

If M is a manifold with or without boundary, we define a curve in M to be a
continuous map y: J — M, where J C R is an interval. (Most of the time, we will
be interested in curves whose domains are open intervals, but for some purposes it
is useful to allow J to have one or two endpoints; the definitions all make sense
with minor modifications in that case, either by considering J as a manifold with
boundary or by interpreting derivatives as one-sided derivatives.) Note that in this
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Fig. 3.9 The velocity of a curve

book the term curve always refers to a map from an interval into M (a parametrized
curve), not just a set of points in M.

Now let M be a smooth manifold, still with or without boundary. Our definition
of tangent spaces leads to a natural interpretation of velocity vectors: given a smooth
curve y: J — M and ty € J, we define the velocity of y at t¢ (Fig. 3.9), denoted
by ¥’(to), to be the vector

ron d
yo) =dy(

) € Tyap) M,

4]

where d/dt|;, is the standard coordinate basis vector in T;,R. (As in ordinary
calculus, it is customary to use d/dt instead of d/d¢r when the manifold is 1-
dimensional.) Other common notations for the velocity are

dy
dt

. d
¥y (to), d_yt/ (o), and

t=to

This tangent vector acts on functions by

d ) d
f==
o d1

/
Vi) f = dV(dt
In other words, y’(fo) is the derivation at y(zy) obtained by taking the derivative
of a function along y. (If 7y is an endpoint of J, this still holds, provided that we
interpret the derivative with respect to ¢ as a one-sided derivative, or equivalently as
the derivative of any smooth extension of f oy to an open subset of R.)
Now let (U, ¢) be a smooth chart with coordinate functions (xi ) Ify(ty) € U, we

(foy)=(foy)(t).

to

can write the coordinate representation of y as y(t) = (yl ®),....y" (t)) , at least for
t sufficiently close to 7y, and then the coordinate formula for the differential yields
dy' 0
Y (t0) = d—(lo) o :
! Xy o)

This means that y’(fo) is given by essentially the same formula as it would be in
Euclidean space: it is the tangent vector whose components in a coordinate basis are
the derivatives of the component functions of y.

The next proposition shows that every tangent vector on a manifold is the velocity
vector of some curve. This gives a different and somewhat more geometric way to
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think about the tangent bundle: it is just the set of all velocity vectors of smooth
curves in M.

Proposition 3.23. Suppose M is a smooth manifold with or without boundary and
p € M. Everyv € TyM is the velocity of some smooth curve in M .

Proof. First suppose that p € Int M (which includes the case IM = @). Let (U, ¢)
be a smooth coordinate chart centered at p, and write v = v'd/dx’|, in terms of
the coordinate basis. For sufficiently small ¢ > 0, let y: (—&,&) — U be the curve
whose coordinate representation is

y(l):(tvl,...,tv”). (3.14)

(Remember, this really means y(t) = ¢! (tvl, e, tv").) This is a smooth curve
with y(0) = p, and the computation above shows that y’(0) = v'/dx' |, (o) = v.
Now suppose p € IM. Let (U, ¢) be a smooth boundary chart centered at p,
and write v = v'9/dx" |, as before. We wish to let y be the curve whose coordinate
representation is (3.14), but this formula represents a point of M only when tv” > 0.
We can accommodate this requirement by suitably restricting the domain of y: if
v™ =0, we define y: (—e&, &) — U as before; if v" > 0, we let the domain be [0, €);
and if v < 0, we let it be (—¢,0]. In each case, y is a smooth curve in M with
y(0) = p and y’(0) = v. a

The next proposition shows that velocity vectors behave well under composition
with smooth maps.

Proposition 3.24 (The Velocity of a Composite Curve). Let F': M — N be a
smooth map, and let y: J — M be a smooth curve. For any ty € J, the velocity at
t = tg of the composite curve F oy: J — N is given by

(F o) (to) = dF(y'(t0)).

Proof. Just go back to the definition of the velocity of a curve:

(FoyYw=dFon( G| )=droar( ]
dt|, dt

On the face of it, the preceding proposition tells us how to compute the velocity
of a composite curve in terms of the differential. However, it is often much more
useful to turn it around the other way, and use it as a streamlined way to compute
differentials. Suppose F': M — N is a smooth map, and we need to compute the
differential dF,, at some point p € M. We can compute d F,(v) for any v € T, M
by choosing a smooth curve y whose initial tangent vector is v, and then applying
Proposition 3.23 to the composite curve F o y. The next corollary summarizes the
result.

)=artiw).

)

Corollary 3.25 (Computing the Differential Using a Velocity Vector). Suppose
F: M — N isasmoothmap, p e M, and v € T,M . Then

dFp(v) = (F oy)'(0)
for any smooth curve y: J — M such that 0 € J, y(0) = p, and y'(0) = v. O
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This corollary frequently yields a much more succinct computation of d F, espe-
cially if F is presented in some form other than an explicit coordinate representa-
tion. We will see many examples of this technique in later chapters.

Alternative Definitions of the Tangent Space

In the literature you will find tangent vectors to a smooth manifold defined in several
different ways. Here we describe the most common ones. (Yet another definition is
suggested in the remark following Problem 11-4.) It is good to be conversant with
all of them. Throughout this section, M represents an arbitrary smooth manifold
with or without boundary.

Tangent Vectors as Derivations of the Space of Germs

The most common alternative definition is based on the notion of “germs” of smooth
functions, which we now define.

A smooth function element on M is an ordered pair (f,U), where U is an open
subsetof M and f: U — R is a smooth function. Given a point p € M, let us define
an equivalence relation on the set of all smooth function elements whose domains
contain p by setting (f,U) ~ (g,V) if f = g on some neighborhood of p. The
equivalence class of a function element ( f, U) is called the germ of f at p. The
set of all germs of smooth functions at p is denoted by C;°(M). It is a real vector
space and an associative algebra under the operations

c[(fD)] =[],
(L] +[(e.M]=[(f +&.UNW],
[(LOD][g. ] =[(fg.UNV)].

(The zero element of this algebra is the equivalence class of the zero function on M .)
Let us denote the germ at p of the function element (f, U) simply by [ f],; there is
no need to include the domain U in the notation, because the same germ is repre-
sented by the restriction of f to any neighborhood of p. To say that two germs [ f],
and [g], are equal is simply to say that f = g on some neighborhood of p, however
small.

A derivation of C ;’,° (M) is alinear map v: C;°(M) — R satisfying the follow-
ing product rule analogous to (3.4):

v[fglp = f(p)vigly + &PV f]p-

It is common to define the tangent space to M at p as the vector space D, M of
derivations of C;°(M). Thanks to Proposition 3.8, it is a simple matter to prove
that £, M is naturally isomorphic to the tangent space as we have defined it (see
Problem 3-7).
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The germ definition has a number of advantages. One of the most significant is
that it makes the local nature of the tangent space clearer, without requiring the use
of bump functions. Because there do not exist analytic bump functions, the germ
definition of tangent vectors is the only one available on real-analytic or complex-
analytic manifolds. The chief disadvantage of the germ approach is simply that it
adds an additional level of complication to an already highly abstract definition.

Tangent Vectors as Equivalence Classes of Curves

Another common approach to tangent vectors is to define an intrinsic equivalence
relation on the set of smooth curves with the same starting point, which captures the
idea of “having the same velocity,” and to define a tangent vector as an equivalence
class of curves. Here we describe one such equivalence relation.

Suppose p is a point of M. We wish to define an equivalence relation on the set
of all smooth curves of the form y: J — M, where J is an interval containing 0
and y(0) = p. Given two such curves y;: J1 = M and y,: J, — M, let us say
that 1 ~ ¥ if (f o ¥1)'(0) = (f o y2)'(0) for every smooth real-valued function
f defined in a neighborhood of p. Let V, M denote the set of equivalence classes.
The tangent space to M at p is often defined to be the set V, M .

Using this definition, it is very easy to define the differential of a smooth map
F: M — N asthe map that sends [y] € V, M to [Foy] € Vg(,)N. Velocity vectors
of smooth curves are almost as easy to define. Suppose y: J — M is any smooth
curve. If 0 € J, then the velocity of y at 0 is just the equivalence class of y in
V)M . The velocity at any other point 7o € J can be defined as the equivalence
class in V), ;)M of the curve y;, defined by y;, (t) = y(to + 1).

Problem 3-8 shows that there is a natural one-to-one correspondence between
VM and T, M. This definition has the advantage of being geometrically more
intuitive, but it has the serious drawback that the existence of a vector space structure
on V, M is not at all obvious.

Tangent Vectors as Equivalence Classes of n-Tuples

Yet another approach to defining the tangent space is based on the transforma-
tion rule (3.12) for the components of tangent vectors in coordinates. One defines
a tangent vector at a point p € M to be a rule that assigns an ordered n-tuple
(vl, e, v”) € R" to each smooth coordinate chart containing p, with the prop-
erty that the n-tuples assigned to overlapping charts transform according to (3.12).
(This is, in fact, the oldest definition of all, and many physicists are still apt to think
of tangent vectors this way.)

In this approach, the velocity of a curve is defined by the usual Euclidean for-
mula in coordinates, and the differential of F': M — N is defined as the linear map
determined by the Jacobian matrix of F in coordinates. One then has to show, by
means of tedious computations involving the chain rule, that these operations are
well defined, independently of the choices of coordinates.
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It is a matter of individual taste which of the various characterizations of T, M
one chooses to take as the definition. The definition we have chosen, however ab-
stract it may seem at first, has several advantages: it is relatively concrete (tangent
vectors are actual derivations of C*° (M), with no equivalence classes involved); it
makes the vector space structure on 7, M obvious; and it leads to straightforward
coordinate-independent definitions of differentials, velocities, and many of the other
geometric objects we will be studying.

Categories and Functors

Another useful perspective on tangent spaces and differentials is provided by the
theory of categories. In this section we summarize the basic definitions of category
theory. We do not do much with the theory in this book, but we mention it because
it provides a convenient and powerful language for talking about many of the math-
ematical structures we will meet.

A category C consists of the following things:

e aclass Ob(C), whose elements are called objects of C,

e a class Hom(C), whose elements are called morphisms of C,

e for each morphism f € Hom(C), two objects X,Y € Ob(C) called the source
and target of [, respectively,

e for each triple X, Y, Z € Ob(C), a mapping called composition:

Hom¢ (X, Y) x Homg(Y, Z) — Homg (X, Z),

written (f,g) — g o f, where Homg (X, Y) denotes the class of all morphisms
with source X and target Y.

The morphisms are required to satisfy the following axioms:

(i) ASSOCIATIVITY: (fog)oh= fo(goh).

(ii) EXISTENCE OF IDENTITIES: For each object X € Ob(C), there exists an iden-
tity morphism 1dy € Homc(X, X), such that Idy of = f = f oldy for all
f € Homg(X,Y).

A morphism f € Homg(X,Y) is called an isomorphism in C if there exists a mor-
phism g € Hom¢g(Y, X) such that f o g =1dy and g o f = Idy.

Example 3.26 (Categories). In most of the categories that one meets “in nature,”
the objects are sets with some extra structure, the morphisms are maps that preserve
that structure, and the composition laws and identity morphisms are the obvious
ones. Some of the categories of this type that appear in this book (implicitly or
explicitly) are listed below. In each case, we describe the category by giving its
objects and its morphisms.

e Set: sets and maps
e Top: topological spaces and continuous maps
e Man: topological manifolds and continuous maps
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Many,: topological manifolds with boundary and continuous maps
Diff: smooth manifolds and smooth maps

Diff,: smooth manifolds with boundary and smooth maps

Vecr: real vector spaces and real-linear maps

Vecc: complex vector spaces and complex-linear maps

Grp: groups and group homomorphisms

Ab: abelian groups and group homomorphisms

Rng: rings and ring homomorphisms

CRng: commutative rings and ring homomorphisms

There are also important categories whose objects are sets with distinguished
base points, in addition to (possibly) other structures. A pointed set is an ordered
pair (X, p), where X is a set and p is an element of X . Other pointed objects such
as pointed topological spaces or pointed smooth manifolds are defined similarly. If
(X, p) and (X', p’) are pointed sets (or topological spaces, etc.), a map F: X —
X’ is said to be a pointed map if F(p) = p’; in this case, we write F: (X, p) —
(X', p’). Here are some important examples of categories of pointed objects.

Set,: pointed sets and pointed maps

Top,: pointed topological spaces and pointed continuous maps

Man.: pointed topological manifolds and pointed continuous maps

Diff,: pointed smooth manifolds and pointed smooth maps I

We use the word class instead of set for the collections of objects and morphisms
in a category because in some categories they are “too large” to be considered sets.
For example, in the category Set, Ob(Set) is the class of all sets; any attempt to treat
it as a set in its own right leads to the well-known Russell paradox of set theory. (See
[LeeTM, Appendix A] or almost any book on set theory for more.) Even though the
classes of objects and morphisms might not constitute sets, we still use notations
such as X € Ob(C) and f € Hom(C) to indicate that X is an object and f is a
morphism in C. A category in which both Ob(C) and Hom(C) are sets is called a
small category, and one in which each class of morphisms Homg (X, Y) is a set is
called locally small. All the categories listed above are locally small but not small.

If C and D are categories, a covariant functor from C to D is a rule ¥ that
assigns to each object X € Ob(C) an object ¥ (X) € Ob(D), and to each morphism
f € Homg (X, Y) a morphism ¥ () € Homp(F (X), ¥ (Y)), so that identities and
composition are preserved:

Fldy) =ldgx):  F(goh)=F(g)oF(h).

We also need to consider functors that reverse morphisms: a contravariant func-
tor from C to D is a rule ¥ that assigns to each object X € Ob(C) an object
F(X) € Ob(D), and to each morphism f € Homg(X,Y) a morphism % (f) €
Homp (# (Y), ¥ (X)), such that

F(Idy) =Idg (x); F(goh)=F(h)oF(g).

» Exercise 3.27. Show that any (covariant or contravariant) functor from C to D
takes isomorphisms in C to isomorphisms in D.
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One trivial example of a covariant functor is the identity functor from any cat-
egory to itself: it takes each object and each morphism to itself. Another example
is the forgetful functor: if C is a category whose objects are sets with some addi-
tional structure and whose morphisms are maps preserving that structure (as are all
the categories listed in the first part of Example 3.26 except Set itself), the forgetful
functor ¥ : C — Set assigns to each object its underlying set, and to each morphism
the same map thought of as a map between sets.

More interesting functors arise when we associate “invariants” to classes of
mathematical objects. For example, the fundamental group is a covariant functor
from Top, to Grp. The results of Problem 2-10 show that there is a contravari-
ant functor from Diff to Vecr defined by assigning to each smooth manifold M
the vector space C°°(M), and to each smooth map F: M — N the linear map
F*: C®(N)—> C*®(M) definedby F*(f)= foF.

The discussion in this chapter has given us some other important examples of
functors. First, the tangent space functor is a covariant functor from the category
Diff. of pointed smooth manifolds to the category Vecgr of real vector spaces. To
each pointed smooth manifold (M, p) it assigns the tangent space 7, M, and to
each pointed smooth map F: (M, p) — (N, F(p)) it assigns the differential d F),.
The fact that this is a functor is the content of parts (b) and (c) of Proposition 3.6.

Similarly, we can think of the assignments M + TM and F + dF (sending
each smooth manifold to its tangent bundle and each smooth map to its global dif-
ferential) as a covariant functor from Diff to itself, called the tangent functor.

Problems

3-1. Suppose M and N are smooth manifolds with or without boundary, and
F: M — N is a smooth map. Show that dFy,: T,M — Tg(p)N is the zero
map for each p € M if and only if F is constant on each component of M .

3-2. Prove Proposition 3.14 (the tangent space to a product manifold).

3-3. Prove that if M and N are smooth manifolds, then 7 (M x N) is diffeomor-
phicto TM x TN.

3-4. Show that T'S! is diffeomorphic to S! x R.

3-5. Let S! € R? be the unit circle, and let K € R? be the boundary of the square
of side 2 centered at the origin: K = {(x, y) : max(|x|,|y|) = 1}. Show that
there is a homeomorphism F: R2 — R? such that F (Sl) = K, but there is
no diffeomorphism with the same property. [Hint: let y be a smooth curve
whose image lies in S', and consider the action of d F(y’(¢)) on the coordi-
nate functions x and y.] (Used on p. 123.)

3-6. Consider S as the unit sphere in C? under the usual identification C? <> R*.

For each z = (21,22) € S3, define a curve y,: R — S3 by y,(t) =
(ei 71, el ’22). Show that y, is a smooth curve whose velocity is never zero.
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3-7.

3-8.

3 Tangent Vectors

Let M be a smooth manifold with or without boundary and p be a point of
M. Let C°(M) denote the algebra of germs of smooth real-valued func-
tions at p, and let D, M denote the vector space of derivations of C;°(M).
Define a map @: O,M — T, M by (@v)f = v([f]p). Show that @ is an
isomorphism. (Used on p. 71.)

Let M be a smooth manifold with or without boundary and p € M. Let V, M
denote the set of equivalence classes of smooth curves starting at p under the
relation y; ~ 5 if (f o y1) (0) = (f o y2)'(0) for every smooth real-valued
function f defined in a neighborhood of p. Show that the map ¥: V,M —
T, M defined by ¥[y] = y'(0) is well defined and bijective. (Used on p. 72.)



Chapter 4
Submersions, Immersions, and Embeddings

Because the differential of a smooth map is supposed to represent the “best linear
approximation” to the map near a given point, we can learn a great deal about a
map by studying linear-algebraic properties of its differential. The most essential
property of the differential—in fact, just about the only property that can be defined
independently of choices of bases—is its rank (the dimension of its image).

In this chapter we undertake a detailed study of the ways in which geometric
properties of smooth maps can be detected from their differentials. The maps for
which differentials give good local models turn out to be the ones whose differen-
tials have constant rank. Three categories of such maps play special roles: smooth
submersions (whose differentials are surjective everywhere), smooth immersions
(whose differentials are injective everywhere), and smooth embeddings (injective
smooth immersions that are also homeomorphisms onto their images). Smooth im-
mersions and embeddings, as we will see in the next chapter, are essential ingredi-
ents in the theory of submanifolds, while smooth submersions play a role in smooth
manifold theory closely analogous to the role played by quotient maps in topology.

The engine that powers this discussion is the rank theorem, a corollary of the in-
verse function theorem. In the first section of the chapter, we prove the rank theorem
and some of its important consequences. Then we delve more deeply into smooth
embeddings and smooth submersions, and apply the theory to a particularly useful
class of smooth submersions, the smooth covering maps.

Maps of Constant Rank

The key linear-algebraic property of a linear map is its rank. In fact, as Theo-
rem B.20 shows, the rank is the only property that distinguishes different linear
maps if we are free to choose bases independently for the domain and codomain.
Suppose M and N are smooth manifolds with or without boundary. Given a
smooth map F: M — N and a point p € M, we define the rank of F at p to be the
rank of the linear map dFy,: T,M — T )N itis the rank of the Jacobian matrix
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of F in any smooth chart, or the dimension of Ind F), € T ()N . If F has the same
rank r at every point, we say that it has constant rank, and write rank F =r.

Because the rank of a linear map is never higher than the dimension of either
its domain or its codomain (Exercise B.22), the rank of F at each point is bounded
above by the minimum of {dim M, dim N }. If the rank of d F}, is equal to this upper
bound, we say that F has full rank at p, and if F has full rank everywhere, we say
F has full rank.

The most important constant-rank maps are those of full rank. A smooth map
F: M — N is called a smooth submersion if its differential is surjective at each
point (or equivalently, if rank ' = dim N). It is called a smooth immersion if its
differential is injective at each point (equivalently, rank F' = dim M ).

Proposition 4.1. Suppose F: M — N is a smooth map and p € M. If dF, is
surjective, then p has a neighborhood U such that F |y is a submersion. If dFp, is
injective, then p has a neighborhood U such that F |y is an immersion.

Proof. 1f we choose any smooth coordinates for M near p and for N near F(p),
either hypothesis means that Jacobian matrix of F in coordinates has full rank at p.
Example 1.28 shows that the set of m x n matrices of full rank is an open subset of
M(m x n,R) (where m = dim M and n = dim N), so by continuity, the Jacobian of
F has full rank in some neighborhood of p. O

As we will see in this chapter, smooth submersions and immersions behave lo-
cally like surjective and injective linear maps, respectively. (There are also analo-
gous notions of topological submersions and topological immersions, which apply
to maps that are merely continuous. We do not have any need to use these, but for
the sake of completeness, we describe them later in the chapter.)

Example 4.2 (Submersions and Immersions).

(a) Suppose My, ..., M are smooth manifolds. Then each of the projection maps
i My x .-+ x My — M; is a smooth submersion. In particular, the projection
7 R*T* — R” onto the first n coordinates is a smooth submersion.

(b) If y: J — M is asmooth curve in a smooth manifold M with or without bound-
ary, then y is a smooth immersion if and only if y/(z) # 0 forall ¢t € J.

(c) If M is a smooth manifold and its tangent bundle TM is given the smooth
manifold structure described in Proposition 3.18, the projection 7: TM — M
is a smooth submersion. To verify this, just note that with respect to any smooth
local coordinates (xi ) on an open subset U € M and the corresponding natural
coordinates (x’,v") on 7~1(U) € TM (see Proposition 3.18), the coordinate
representation of 7 is 7 (x,v) = x.

(d) The smooth map X : R? — R3 given by

X(u,v) = ((2 + cos2mu)cos2mv, (2 4+ cos2mu) sin2w v, sin 27ru)

is a smooth immersion of R? into R3 whose image is the doughnut-shaped
surface obtained by revolving the circle (y — 2)? 4+ z2 = 1 in the (y,z)-plane
about the z-axis (Fig. 4.1). I
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(y—2)2+4z%2=1

Fig. 4.1 A torus of revolution in R3

» Exercise 4.3. Verify the claims made in the preceding example.

» Exercise 4.4. Show that a composition of smooth submersions is a smooth sub-
mersion, and a composition of smooth immersions is a smooth immersion. Give a
counterexample to show that a composition of maps of constant rank need not have
constant rank.

Local Diffeomorphisms

If M and N are smooth manifolds with or without boundary, amap F: M — N is
called a local diffeomorphism if every point p € M has a neighborhood U such that
F(U)isopenin N and F|y: U — F(U) is a diffeomorphism. The next theorem
is the key to the most important properties of local diffeomorphisms.

Theorem 4.5 (Inverse Function Theorem for Manifolds). Suppose M and N are
smooth manifolds, and F: M — N is a smooth map. If p € M is a point such that
dFy, is invertible, then there are connected neighborhoods Uy of p and Vy of F(p)
such that F|y,: Uy — Vy is a diffeomorphism.

Proof. The fact that d F, is bijective implies that M and N have the same dimen-
sion, say 7. Choose smooth charts (U, @) centered at p and (V, ¥) centered at F(p),
Wlth F(U) C V. Then_ F= VoFogplis a smooth map from the open subset

=(U) CR”" into V= (V) € R, with F(p) = 0. Because ¢ and ¢ are dif-
feomorphlsms the differential d Fo = dyrp(py o dFpod (¢~ '), is nonsingular. The
ordinary i inverse functlon theorem (Theorem C. 34) shows that there are connected
open subsets Uo cU and VO cV contamlng 0 such that F restricts to a diffeo-
morphism from Uo to VO. Then Uy = ¢~ (Uo) and Vo =y~ (Vo) are connected
neighborhoods of p and F(p), respectively, and it follows by composition that F |y,
is a diffeomorphism from Uy to V. O

It is important to notice that we have stated Theorem 4.5 only for manifolds with-
out boundary. In fact, it can fail for a map whose domain has nonempty boundary
(see Problem 4-1). However, when the codomain has nonempty boundary, there is
something useful that can be said: provided the map takes its values in the interior of
the codomain, the same conclusion holds because the interior is a smooth manifold
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without boundary. Problem 4-2 shows that this is always the case at points where
the differential is invertible.

Proposition 4.6 (Elementary Properties of Local Diffeomorphisms).

(a) Every composition of local diffeomorphisms is a local diffeomorphism.

(b) Every finite product of local diffeomorphisms between smooth manifolds is a
local diffeomorphism.

(c) Every local diffeomorphism is a local homeomorphism and an open map.

(d) The restriction of a local diffeomorphism to an open submanifold with or with-
out boundary is a local diffeomorphism.

(e) Every diffeomorphism is a local diffeomorphism.

(f) Every bijective local diffeomorphism is a diffeomorphism.

(g) A map between smooth manifolds with or without boundary is a local diffeo-
morphism if and only if in a neighborhood of each point of its domain, it has a
coordinate representation that is a local diffeomorphism.

» Exercise 4.7. Prove the preceding proposition.

Proposition 4.8. Suppose M and N are smooth manifolds (without boundary), and
F: M — N isamap.

(a) F is a local diffeomorphism if and only if it is both a smooth immersion and a
smooth submersion.

) If dimM = dim N and F is either a smooth immersion or a smooth submer-
sion, then it is a local diffeomorphism.

Proof. Suppose first that F' is a local diffeomorphism. Given p € M, there is a
neighborhood U of p such that F is a diffeomorphism from U to F(U). It then fol-
lows from Proposition 3.6(d) that dF,: T,M — Tr(,)N is an isomorphism. Thus
rank F = dim M = dim N, so F is both a smooth immersion and a smooth sub-
mersion. Conversely, if F' is both a smooth immersion and a smooth submersion,
then dF), is an isomorphism at each p € M, and the inverse function theorem for
manifolds (Theorem 4.5) shows that p has a neighborhood on which F restricts to
a diffeomorphism onto its image. This proves (a).

To prove (b), note that if M and N have the same dimension, then either injec-
tivity or surjectivity of d F}, implies bijectivity, so F' is a smooth submersion if and
only if it is a smooth immersion, and thus (b) follows from (a). O

» Exercise 4.9. Show that the conclusions of Proposition 4.8 still hold if N is al-
lowed to be a smooth manifold with boundary, but not if M is. (See Problems 4-1
and 4-2.)

» Exercise 4.10. Suppose M, N, P are smooth manifolds with or without boundary,
and F: M — N is alocal diffeomorphism. Prove the following:

(a) If G: P — M is continuous, then G is smooth if and only if F o G is smooth.
(b) If in addition F is surjective and G: N — P is any map, then G is smooth if and
only if G o F is smooth.
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Example 4.11 (Local Diffeomorphisms). The map ¢: R — S! defined in Exam-
ple 2.13(b) is a local diffeomorphism because in a neighborhood of each point it
has a coordinate representation of the form ¢ — 2wt + ¢, which is a local diffeo-
morphism. Similarly, the map ¢”: R” — T" defined in Example 2.13(c) is a local
diffeomorphism because it is a product of local diffeomorphisms. I

At the end of this chapter, we will explore an important special class of local
diffeomorphisms, the smooth covering maps.

The Rank Theorem

The most important fact about constant-rank maps is the following consequence of
the inverse function theorem, which says that a constant-rank smooth map can be
placed locally into a particularly simple canonical form by a change of coordinates.
It is a nonlinear version of the canonical form theorem for linear maps given in
Theorem B.20.

Theorem 4.12 (Rank Theorem). Suppose M and N are smooth manifolds of di-
mensions m and n, respectively, and F: M — N is a smooth map with constant
rank r. For each p € M there exist smooth charts (U, @) for M centered at p and
(V,¥) for N centered at F(p) such that F(U) C V, in which F has a coordinate
representation of the form

~

F(xt oo x" xm ™) = (xh . x7,0,...,0). 4.1)

In particular, if F is a smooth submersion, this becomes

A~

F(xl,...,x”,x"+1,...,xm)=(x1,...,x"), 4.2)
and if F is a smooth immersion, it is
ﬁ(xl,...,xm):(xl,...,xm,O,...,O). 4.3)

Proof. Because the theorem is local, after choosing smooth coordinates we can re-
place M and N by open subsets U € R™ and V' C R”. The fact that DF(p) has
rank r implies that its matrix has some r x r submatrix with nonzero determinant.
By reordering the coordinates, we may assume that it is the upper left submatrix,
(0F?/dx7) for i, j = 1,...,r. Let us relabel the standard coordinates as (x,y) =
(xh . oxm oyt y™T) in R™ and (v,w) = (v!, .07 w! Lo w"T7) in R7.
By initial translations of the coordinates, we may assume without loss of generality
that p = (0,0) and F(p) = (0,0). If we write F(x,y) = (Q(x,y),R(x,y)) for
some smooth maps Q: U — R” and R: U — R"™", then our hypothesis is that
(3Q"/dx7) is nonsingular at (0, 0).
Define ¢p: U — R™ by ¢(x,y) = (Q(x, ¥), y). Its total derivative at (0, 0) is
00! 90!

—(0,0 -(0,0
Dg(0,0) = [ 7 @0 5,7 @0 ),
0oy
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where we have used the following standard notation: for positive integers i/ and j,
the symbol 8]’- , called the Kronecker delta, is defined by

s — 1 ifi =],

I 0 ifi#j.
The matrix Dg¢(0,0) is nonsingular by virtue of the hypothesis. Therefore, by the
inverse function theorem, there are connected neighborhoods Uy of (0,0) and Uy
of ¢(0,0) = (0,0) such that ¢: Up — Uy is a diffeomorphism. By shrinking Uy
and Uy if necessary, we may assume that Uy is an open cube. Writing the inverse
map as ¢ “(x,y) = (A(x ¥), B(x, y)) for some smooth functions A: Uy — R”

4.4)

and B: Uo — R™7", we compute

(x.y) =@(A(x,y). B(x,y)) = (Q(A(x,y). B(x.,y)). B(x, y)). 4.5)

Comparing y components shows that B(x, y) = y, and therefore ¢! has the form
¢ x,y) = (A(x,), ).

On the other hand, ¢ o ¢! = Id implies Q(A(x,y),y) = x, and therefore
F o ¢~ ! has the form

Fog™'(x,y) = (x,R(x,)),
where R: Uy — R"™" is defined by R(x, y) = R(A(x,y).y). The Jacobian matrix
of this composite map at an arbitrary point (x, y) € U is
8 0

D(Fogp ') (x,y) = i IR
(Fop™).) 8R( ) R.(x,y)

Since composing with a diffeomorphism does not change the rank of a map, this
matrix has rank r everywhere in Up. The first 7 columns are obviously linearly
independent, so the rank can be r only if the derivatives BR’ /0y7 vanish identically
on Uy, which implies that Ris actually independent of ( Yo, ym ) (This is one
reason we arranged for UO to be a cube.) Thus, if we let S(x) = R (x,0), then we
have

Fo (p_l(x, y)= (x, S(x)). (4.6)
To complete the proof, we need to define an appropriate smooth chart in some
neighborhood of (0,0) € V. Let Vy € V be the open subset defined by Vp =

{(v,w) eV :(,0)e (70}. Then Vj is a neighborhood of (0,0). Because Uy is
a cube and F o ¢! has the form (4.6), it follows that F o ¢~'(Up) C Vo, and
therefore F(Uy) C Vy. Define ¢: Vo — R” by ¢ (v, w) = (v,w — S(v)). This
is a diffeomorphism onto its image, because its inverse is given explicitly by
Y (s,1) = (5.1 + S(s)); thus (Vo, ¥) is a smooth chart. It follows from (4.6) that

YoFop™(x.y) =y(x,5(x) = (x.S(x) = S(x)) = (x.0),

which was to be proved. O
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The next corollary can be viewed as a more invariant statement of the rank theo-
rem. It says that constant-rank maps are precisely the ones whose local behavior is
the same as that of their differentials.

Corollary 4.13. Let M and N be smooth manifolds, let F: M — N be a smooth
map, and suppose M is connected. Then the following are equivalent:

(a) Foreach p € M there exist smooth charts containing p and F(p) in which the
coordinate representation of F is linear.
(b) F has constant rank.

Proof. First suppose F has a linear coordinate representation in a neighborhood of
each point. Since every linear map has constant rank, it follows that the rank of F is
constant in a neighborhood of each point, and thus by connectedness it is constant
on all of M. Conversely, if F has constant rank, the rank theorem shows that it has
the linear coordinate representation (4.1) in a neighborhood of each point. O

The rank theorem is a purely local statement. However, it has the following pow-
erful global consequence.

Theorem 4.14 (Global Rank Theorem). Let M and N be smooth manifolds, and
suppose F: M — N is a smooth map of constant rank.

(a) If F is surjective, then it is a smooth submersion.
(b) If F is injective, then it is a smooth immersion.
(c) If F is bijective, then it is a diffeomorphism.

Proof. Let m = dimM, n = dim N, and suppose F has constant rank r. To
prove (a), assume that F' is not a smooth submersion, which means that r < n. By
the rank theorem, for each p € M there are smooth charts (U, ¢) for M centered
at p and (V,y) for N centered at F(p) such that F(U) C V and the coordinate
representation of F is given by (4.1). (See Fig. 4.2.) Shrinking U if necessary, we
may assume that it is a regular coordinate ball and F (l7 ) C V. This implies that
F(U) is a compact subset of the set {y € V : y"t1 =... = y" =0}, so it is closed
in N and contains no open subset of N ; hence it is nowhere dense in N . Since every
open cover of a manifold has a countable subcover, we can choose countably many
such charts {(U;, ¢;)} covering M, with corresponding charts {(V;,¥;)} covering
F(M). Because F(M) is equal to the countable union of the nowhere dense sets
F (Ui), it follows from the Baire category theorem (Theorem A.58) that F (M) has
empty interior in N, which means F cannot be surjective.

To prove (b), assume that F' is not a smooth immersion, so that r < m. By
the rank theorem, for each p € M we can choose charts on neighborhoods of
p and F(p) in which F has the coordinate representation (4.1). It follows that
F(0,...,0,e) = F(0,...,0,0) for any sufficiently small ¢, so F is not injective.

Finally, (c) follows from (a) and (b), because a bijective smooth map of constant
rank is a smooth submersion by part (a) and a smooth immersion by part (b); so
Proposition 4.8 implies that F is a local diffeomorphism, and because it is bijective,
it is a diffeomorphism. O
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F(U)
Fig. 4.2 Proof of Theorem 4.14(a)

The Rank Theorem for Manifolds with Boundary

In the context of manifolds with boundary, we need the rank theorem only in one
special case: that of a smooth immersion whose domain is a smooth manifold with
boundary. Of course, since the interior of a smooth manifold with boundary is a
smooth manifold, near any interior point of the domain the ordinary rank theorem
applies. For boundary points, we have the following substitute for the rank theorem.

Theorem 4.15 (Local Immersion Theorem for Manifolds with Boundary). Sup-
pose M is a smooth m-manifold with boundary, N is a smooth n-manifold, and
F: M — N is a smooth immersion. For any p € 0M, there exist a smooth bound-
ary chart (U, @) for M centered at p and a smooth coordinate chart (V, V) for N
centered at F(p) with F(U) CV, in which F has the coordinate representation

A~

F(x' ... ox™)=(x'....x™,0,....0). 4.7)

Proof. By choosing initial smooth charts for M and N, we may assume that M
and N are open subsets of H” and R”, respectively, and also that p = 0 € H™,
and F(p) = 0 € R”. By definition of smoothness for functions on H”, F' extends
to a smooth map F: W — R", where W is some open subset of R containing 0.
Because d Fo = dF is injective, by shrinking W if necessary, we may assume that
F is a smooth immersion. Let us write the coordinates on R as x = (xt.x™),
and those on R” as (v, w) = (v!,...,v" w', ... w"™).

By the rank theorem, there exist smooth charts (Uy, o) for R centered at 0 and
(Vo, W) for R™ centered at O such that F = Yoo Fo @, ! is given by (4.7). The
only problem with these coordinates is that ¢y might not restrict to a boundary chart
for M. But we can correct this easily as follows. Because ¢y is a diffeomorphism
from Uj to an open subset Uy = ©o(Up) € R™, the map (po_l X Idgn-m is a diffeo-
morphism from Uo x R"™™ to Uy x R"™™  Let Y= ((po_l X Ian—m) o Y¥g, which
is a diffeomorphism from some open subset V' C ¥V, containing O to a neighborhood
of 0 in R”. Using (4.7), we compute

Yo F(x) = (5" xIdga-m) o Y0 F oy 0 o(x)
= (@al X Ian—m) o ﬁ(goo(x))
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= (¢! x Idgn—m) (¢o(x),0) = (x,0).

Thus, the original coordinates for M (restricted to a sufficiently small neighborhood
of 0) and the chart (V, ) for N satisfy the desired conditions. O

It is possible to prove a similar theorem for more general maps with constant rank
out of manifolds with boundary, but the proof is more elaborate because an extension
of F to an open subset does not automatically have constant rank. Since we have
no need for this more general result, we leave it to the interested reader to pursue
(Problem 4-3). On the other hand, the situation is considerably more complicated
for a map whose codomain is a manifold with boundary: since the image of the map
could intersect the boundary in unpredictable ways, there is no way to put such a
map into a simple canonical form without strong restrictions on the map.

Embeddings

One special kind of immersion is particularly important. If M and N are smooth
manifolds with or without boundary, a smooth embedding of M into N is a smooth
immersion F': M — N thatis also a topological embedding, i.e., a homeomorphism
onto its image F (M) C N in the subspace topology. A smooth embedding is a map
that is both a topological embedding and a smooth immersion, not just a topological
embedding that happens to be smooth.

» Exercise 4.16. Show that every composition of smooth embeddings is a smooth
embedding.

Example 4.17 (Smooth Embeddings).

(a) If M is a smooth manifold with or without boundary and U € M is an open
submanifold, the inclusion map U < M is a smooth embedding.

(b) If My, ..., My are smooth manifolds and p; € M; are arbitrarily chosen points,
each of the maps t; : M; — My x --- X M. given by

4(@)=(p1,---s Pj=1:9: Pj+1s- -+ Pk)

is a smooth embedding. In particular, the inclusion map R” < R”*¥ given by

sending (x',...,x") to (x',...,x",0,...,0) is a smooth embedding.
(c) Problem 4-12 shows that the map X : R? — R3 of Example 4.2(d) descends to
a smooth embedding of the torus S! x S! into R3. I

To understand more fully what it means for a map to be a smooth embedding,
it is useful to bear in mind some examples of injective smooth maps that are not
smooth embeddings. The next three examples illustrate three rather different ways
in which this can happen.

Example 4.18 (A Smooth Topological Embedding). The map y: R — R? given
by y(t) = (t3,0) is a smooth map and a topological embedding, but it is not a
smooth embedding because y’(0) = 0. I
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Fig. 4.3 The figure-eight curve of Example 4.19

Example 4.19 (The Figure-Eight Curve). Consider the curve 8: (—m, ) — R?
defined by

B(t) = (sin2t,sint).
Its image is a set that looks like a figure-eight in the plane (Fig. 4.3),sometimes
called a lemniscate. (It is the locus of points (x, y) where x? = 4y? (1 — y?), as
you can check.) It is easy to see that 8 is an injective smooth immersion because

B’ (t) never vanishes; but it is not a topological embedding, because its image is
compact in the subspace topology, while its domain is not. I

Example 4.20 (A Dense Curve on the Torus). Let T2 = S! xS! € C? denote the
torus, and let & be any irrational number. The map y: R — T2 given by

]/(t) — (eZHitﬁeZHiott)

is a smooth immersion because y’(¢) never vanishes. It is also injective, because
y(t1) = y(t2) implies that both #; —t, and «¢; — «t, are integers, which is impossi-
ble unless t; = 15.

Consider the set y(Z) = {y(n) : n € Z}. 1t follows from Dirichlet’s approxima-
tion theorem (see below) that for every ¢ > 0, there are integers n,m such that
lan —m| < e. Using the fact that |e'! —e"2| < |t; — 1, ] for t1,1, € R (because the
line segment from e?*1 to e'’2 is shorter than the circular arc of length |t} — #5]), we
have |e2mi@n — || = |e2mian — ¢2mim| < |27 (an —m)| < 2me. Therefore,

})/(n) —y(0)| = |(ez”i", ezmo‘") —(1, 1)| = |(1 ez”i“") —(1, 1)| < 2ms.

Thus, y(0) is a limit point of y(Z). But this means that y is not a homeomorphism
onto its image, because Z has no limit point in R. In fact, it is not hard to show that
the image set y(R) is actually dense in T? (see Problem 4-4). I

The preceding example and Problem 4-4 depend on the following elementary
result from number theory.

Lemma 4.21 (Dirichlet’s Approximation Theorem). Given o € R and any posi-
tive integer N, there exist integers n,m with 1 <n < N such that [noe —m| < 1/N.

Proof. For any real number x, let f(x) = x — | x|, where | x| is the greatest integer
less than or equal to x. Since the N + 1 numbers { f(ia) :i =0,..., N} all lie in
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the interval [0, 1), by the pigeonhole principle there must exist integers i and j with
0 <i < j < N such that both f(i«) and f(j) lie in one of the N subintervals
[0,1/N), [I/N,2/N), ..., [(N —1)/N,1). This means that | f(ja) — f(ia)| <
1/N,sowecantaken = j —i andm = | jo| — |ir]. O

The following proposition gives a few simple sufficient criteria for an injective
immersion to be an embedding.

Proposition 4.22.  Suppose M and N are smooth manifolds with or without
boundary,and F: M — N is an injective smooth immersion. If any of the following
holds, then F is a smooth embedding.

(a) F is an open or closed map.

(b) F is a proper map.

(c) M is compact.

(d) M has empty boundary and dim M = dim N.

Proof. If F is open or closed, then it is a topological embedding by Theorem A.38,
so it is a smooth embedding. Either (b) or (c) implies that F is closed: if F is proper,
then it is closed by Theorem A.57, and if M is compact, then F is closed by the
closed map lemma. Finally, assume M has empty boundary and dim M = dim N.
Then d F), is nonsingular everywhere, and Problem 4-2 shows that F(M) C IntN.
Proposition 4.8(b) shows that F': M — Int N is a local diffeomorphism, so it is
an open map. It follows that F: M — N is a composition of open maps M —
Int N < N, so it is an embedding. O

Example 4.23. Let (: S <> R”*! be the inclusion map. We showed in Exam-
ple 2.13(d) that ¢ is smooth by computing its coordinate representation with respect
to graph coordinates. It is easy to verify in the same coordinates that its differen-
tial is injective at each point, so it is an injective smooth immersion. Because S” is
compact, ¢ is a smooth embedding by Proposition 4.22. I

» Exercise 4.24. Give an example of a smooth embedding that is neither an open
map nor a closed map.

Theorem 4.25 (Local Embedding Theorem). Suppose M and N are smooth man-
ifolds with or without boundary, and F: M — N is a smooth map. Then F is a
smooth immersion if and only if every point in M has a neighborhood U C M such
that Fly: U — N is a smooth embedding.

Proof. One direction is immediate: if every point has a neighborhood on which F'is
a smooth embedding, then F has full rank everywhere, so it is a smooth immersion.

Conversely, suppose F is a smooth immersion, and let p € M. We show first
that p has a neighborhood on which F is injective. If F'(p) ¢ ON, then either the
rank theorem (if p ¢ dM) or Theorem 4.15 (if p € M ) implies that there is a neigh-
borhood U; of p on which F has a coordinate representation of the form (4.3).
It follows from this formula that F|y, is injective. On the other hand, suppose
F(p) € N, and let (W, ) be any smooth boundary chart for N centered at F(p).
If we let Uy = F~ (W), which is a neighborhood of p, and let ¢: H" <> R” be the
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inclusion map, then the preceding argument can be applied to the composite map
toy o Fly,: Up = R”, to show that p has a neighborhood U; € Uy such that
Loy o Fly, is injective, from which it follows that F'|y, is injective.

Now let p € M be arbitrary, and let U; be a neighborhood of p on which F is
injective. There exists a precompact neighborhood U of p such that U C U,. The
restriction of F to U is an injective continuous map with compact domain, so it
is a topological embedding by the closed map lemma. Because any restriction of a
topological embedding is again a topological embedding, F |y is both a topological
embedding and a smooth immersion, hence a smooth embedding. O

Theorem 4.25 points the way to a notion of immersions that makes sense for
arbitrary topological spaces: if X and Y are topological spaces, a continuous map
F: X — Y is called a topological immersion if every point of X has a neighbor-
hood U such that F'|y is a topological embedding. Thus, every smooth immersion
is a topological immersion; but, just as with embeddings, a topological immersion
that happens to be smooth need not be a smooth immersion (cf. Example 4.18).

Submersions

One of the most important applications of the rank theorem is to vastly expand our
understanding of the properties of submersions. If 7: M — N is any continuous
map, a section of m is a continuous right inverse for s, i.e., a continuous map
0: N —> M suchthat m oo =Idy:

n‘ >a

N.

A local section of m is a continuous map o : U — M defined on some open subset
U C N and satisfying the analogous relation w o 0 = Idyy. Many of the important
properties of smooth submersions follow from the fact that they admit an abundance
of smooth local sections.

Theorem 4.26 (Local Section Theorem). Suppose M and N are smooth mani-
folds and w: M — N is a smooth map. Then & is a smooth submersion if and only
if every point of M is in the image of a smooth local section of .

Proof. First suppose that w is a smooth submersion. Given p € M, let ¢ =
7(p) € N. By the rank theorem, we can choose smooth coordinates (x',...,x™)
centered at p and (y',...,y") centered at ¢ in which 7 has the coordinate repre-
sentation 7 (x', ... x" x"t1 . x™) = (x!,...,x"). If ¢ is a sufficiently small
positive number, the coordinate cube

C€={x:|xi|<8f0ri=1,...,m}
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Fig. 4.4 Local section of a submersion

is a neighborhood of p whose image under 7 is the cube
C/={y:|y'|<efori=1,...,n}.
The map o: C/ — C, whose coordinate representation is
o(x'....x") = (x'....x",0,...,0)

is a smooth local section of 7 satisfying o(q) = p (Fig. 4.4).

Conversely, assume each point of M is in the image of a smooth local section.
Given p € M, let o: U — M be a smooth local section such that o (q) = p, where
q =n(0(q)) = m(p) € N. The equation o 0 = Idy implies that d 7, 0 dog =
Idr, v, which in turn implies that d i), is surjective. O

This theorem motivates the following definition: if 7: X —